Abstract

While powder bed fusion (PBF) additive manufacturing offers many advantages and exciting applications, its broader adoption is hindered by issues with reliability and variations during the manufacturing process. To address this, researchers have identified the importance of using both finite element modeling and control-oriented modeling to predict and improve the quality of printed parts. In this paper, we propose a novel control-oriented multi-track melt pool width model that utilizes the superposition principle to account for the complex thermal interactions that occur during PBF. We validate the effectiveness of the model by applying a finite element model of the thermal fields in PBF.

References

1.
Liao
,
S.
,
Golgoon
,
A.
,
Mozaffar
,
M.
, and
Cao
,
J.
,
2023
, “
Efficient GPU-Accelerated Thermomechanical Solver for Residual Stress Prediction in Additive Manufacturing
,”
Comput. Mech.
,
71
(
5
), pp.
879
893
.
2.
Wang
,
D.
, and
Chen
,
X.
,
2018
, “
A Multirate Fractional-Order Repetitive Control for Laser-Based Additive Manufacturing
,”
Control Eng. Pract.
,
77
, pp.
41
51
.
3.
Bennett
,
J.
,
Webster
,
S.
,
Byers
,
J.
,
Johnson
,
O.
,
Wolff
,
S.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2022
, “
Powder-Borne Porosity in Directed Energy Deposition
,”
J. Manuf. Process.
,
80
, pp.
69
74
.
4.
Wang
,
D.
, and
Chen
,
X.
,
2021
, “
Closed-Loop High-Fidelity Simulation Integrating Finite Element Modeling With Feedback Controls in Additive Manufacturing
,”
ASME J. Dyn. Syst. Meas. Contr.
,
143
(
2
), p.
021006
.
5.
Schwalbach
,
E. J.
,
Donegan
,
S. P.
,
Chapman
,
M. G.
,
Chaput
,
K. J.
, and
Groeber
,
M. A.
,
2019
, “
A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,”
Addit. Manuf.
,
25
, pp.
485
498
.
6.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118
, pp.
73
90
.
7.
Ren
,
Y.
, and
Wang
,
Q.
,
2023
, “
A Finite Difference Method for Fast Prediction and Control of Part-Scale Temperature Evolution in Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
93
, pp.
299
314
.
8.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
.
9.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Contr. Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
10.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Control-Oriented MIMO Modeling of Laser-Aided Powder Deposition Processes
,”
American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
,
IEEE
, pp.
3637
3642
.
11.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031003
.
12.
Wang
,
D.
,
Zhao
,
X.
, and
Chen
,
X.
,
2021
, “
New Hammerstein Modeling and Analysis for Controlling Melt Pool Width in Powder Bed Fusion Additive Manufacturing
,”
ASME Lett. Dyn. Syst. Contr.
,
1
(
3
), p.
031012
.
13.
Hofman
,
J.
,
Pathiraj
,
B.
,
Van Dijk
,
J.
,
de Lange
,
D.
, and
Meijer
,
J.
,
2012
, “
A Camera Based Feedback Control Strategy for the Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2455
2462
.
14.
Wang
,
D.
,
Jiang
,
T.
, and
Chen
,
X.
,
2021
, “
Control-Oriented Modeling and Repetitive Control in In-Layer and Cross-Layer Thermal Interactions in Selective Laser Sintering
,”
ASME Lett. Dyn. Syst. Contr.
,
1
(
1
), p.
011003
.
15.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
.
16.
Irwin
,
J. E.
,
Wang
,
Q.
,
Michaleris
,
P. P.
,
Nassar
,
A. R.
,
Ren
,
Y.
, and
Stutzman
,
C. B.
,
2021
, “
Iterative Simulation-Based Techniques for Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102078
.
17.
Kannatey-Asibu Jr
,
E.
,
2009
,
Principles of Laser Materials Processing
, Vol.
4
,
John Wiley & Sons
,
Hoboken, NJ
.
18.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
19.
Chen
,
X.
,
Jiang
,
T.
,
Wang
,
D.
, and
Xiao
,
H.
,
2018
, “
Realtime Control-Oriented Modeling and Disturbance Parameterization for Smart and Reliable Powder Bed Fusion Additive Manufacturing
,”
Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 13–15
.
You do not currently have access to this content.