Abstract
While powder bed fusion (PBF) additive manufacturing offers many advantages and exciting applications, its broader adoption is hindered by issues with reliability and variations during the manufacturing process. To address this, researchers have identified the importance of using both finite element modeling and control-oriented modeling to predict and improve the quality of printed parts. In this paper, we propose a novel control-oriented multi-track melt pool width model that utilizes the superposition principle to account for the complex thermal interactions that occur during PBF. We validate the effectiveness of the model by applying a finite element model of the thermal fields in PBF.
Issue Section:
Research Papers
References
1.
Liao
, S.
, Golgoon
, A.
, Mozaffar
, M.
, and Cao
, J.
, 2023
, “Efficient GPU-Accelerated Thermomechanical Solver for Residual Stress Prediction in Additive Manufacturing
,” Comput. Mech.
, 71
(5
), pp. 879
–893
. 2.
Wang
, D.
, and Chen
, X.
, 2018
, “A Multirate Fractional-Order Repetitive Control for Laser-Based Additive Manufacturing
,” Control Eng. Pract.
, 77
, pp. 41
–51
. 3.
Bennett
, J.
, Webster
, S.
, Byers
, J.
, Johnson
, O.
, Wolff
, S.
, Ehmann
, K.
, and Cao
, J.
, 2022
, “Powder-Borne Porosity in Directed Energy Deposition
,” J. Manuf. Process.
, 80
, pp. 69
–74
. 4.
Wang
, D.
, and Chen
, X.
, 2021
, “Closed-Loop High-Fidelity Simulation Integrating Finite Element Modeling With Feedback Controls in Additive Manufacturing
,” ASME J. Dyn. Syst. Meas. Contr.
, 143
(2
), p. 021006
. 5.
Schwalbach
, E. J.
, Donegan
, S. P.
, Chapman
, M. G.
, Chaput
, K. J.
, and Groeber
, M. A.
, 2019
, “A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,” Addit. Manuf.
, 25
, pp. 485
–498
. 6.
Masoomi
, M.
, Thompson
, S. M.
, and Shamsaei
, N.
, 2017
, “Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,” Int. J. Mach. Tools Manuf.
, 118
, pp. 73
–90
. 7.
Ren
, Y.
, and Wang
, Q.
, 2023
, “A Finite Difference Method for Fast Prediction and Control of Part-Scale Temperature Evolution in Laser Powder Bed Fusion
,” J. Manuf. Process.
, 93
, pp. 299
–314
. 8.
Foroozmehr
, A.
, Badrossamay
, M.
, Foroozmehr
, E.
, and Golabi
, S.
, 2016
, “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,” Mater. Des.
, 89
, pp. 255
–263
. 9.
Song
, L.
, and Mazumder
, J.
, 2011
, “Feedback Control of Melt Pool Temperature During Laser Cladding Process
,” IEEE Trans. Contr. Syst. Technol.
, 19
(6
), pp. 1349
–1356
. 10.
Cao
, X.
, and Ayalew
, B.
, 2015
, “Control-Oriented MIMO Modeling of Laser-Aided Powder Deposition Processes
,” American Control Conference (ACC)
, Chicago, IL
, July 1–3
, IEEE
, pp. 3637
–3642
.11.
Fathi
, A.
, Khajepour
, A.
, Durali
, M.
, and Toyserkani
, E.
, 2008
, “Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,” ASME J. Manuf. Sci. Eng.
, 130
(3
), p. 031003
. 12.
Wang
, D.
, Zhao
, X.
, and Chen
, X.
, 2021
, “New Hammerstein Modeling and Analysis for Controlling Melt Pool Width in Powder Bed Fusion Additive Manufacturing
,” ASME Lett. Dyn. Syst. Contr.
, 1
(3
), p. 031012
. 13.
Hofman
, J.
, Pathiraj
, B.
, Van Dijk
, J.
, de Lange
, D.
, and Meijer
, J.
, 2012
, “A Camera Based Feedback Control Strategy for the Laser Cladding Process
,” J. Mater. Process. Technol.
, 212
(11
), pp. 2455
–2462
. 14.
Wang
, D.
, Jiang
, T.
, and Chen
, X.
, 2021
, “Control-Oriented Modeling and Repetitive Control in In-Layer and Cross-Layer Thermal Interactions in Selective Laser Sintering
,” ASME Lett. Dyn. Syst. Contr.
, 1
(1
), p. 011003
. 15.
Tang
, L.
, and Landers
, R. G.
, 2011
, “Layer-to-Layer Height Control for Laser Metal Deposition Process
,” ASME J. Manuf. Sci. Eng.
, 133
(2
), p. 021009
. 16.
Irwin
, J. E.
, Wang
, Q.
, Michaleris
, P. P.
, Nassar
, A. R.
, Ren
, Y.
, and Stutzman
, C. B.
, 2021
, “Iterative Simulation-Based Techniques for Control of Laser Powder Bed Fusion Additive Manufacturing
,” Addit. Manuf.
, 46
, p. 102078
. 17.
Kannatey-Asibu Jr
, E.
, 2009
, Principles of Laser Materials Processing
, Vol. 4
, John Wiley & Sons
, Hoboken, NJ
.18.
Tang
, M.
, Pistorius
, P. C.
, and Beuth
, J. L.
, 2017
, “Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,” Addit. Manuf.
, 14
, pp. 39
–48
. 19.
Chen
, X.
, Jiang
, T.
, Wang
, D.
, and Xiao
, H.
, 2018
, “Realtime Control-Oriented Modeling and Disturbance Parameterization for Smart and Reliable Powder Bed Fusion Additive Manufacturing
,” Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference
, Austin, TX
, Aug. 13–15
.Copyright © 2023 by ASME
You do not currently have access to this content.