Abstract

This article investigates the theoretical Cramér-Rao bounds on estimation accuracy of longitudinal vehicle dynamics parameters. This analysis is motivated by the value of parameter estimation in various applications, including chassis model validation and active safety. Relevant literature addresses this demand through algorithms capable of estimating chassis parameters for diverse conditions. While the implementation of such algorithms has been studied, the question of fundamental limits on their accuracy remains largely unexplored. We address this question by presenting two contributions. First, this article presents theoretical findings which reveal the prevailing effects underpinning vehicle chassis parameter identifiability. We then validate these findings with data from on-road experiments. Our results demonstrate, among a variety of effects, the strong relevance of road grade variability in determining parameter identifiability from a drive cycle. These findings can motivate improved experimental designs in the future.

References

1.
Papelis
,
Y.
,
Brown
,
T.
,
Watson
,
G.
,
Holz
,
D.
, and
Pan
,
D.
,
2004
, “
Study of ESC Assisted Driver Performance Using a Driving Simulator
,” Document ID: N04-033- PR, University of Iowa, National Advanced Driving Simulator, IA.
2.
Zabat
,
M.
,
Farascaroli
,
S.
,
Browand
,
F.
,
Nestlerode
,
M.
, and
Baez
,
J.
,
1994
, “
Drag Measurements on a Platoon of Vehicles
,” Report from Institute of Transportation Studies at UC Berkeley, California PATH Program.
3.
He
,
C.
,
Ge
,
J.
, and
Orosz
,
G.
,
2018
, “
Data-Based Fuel-Economy Optimization of Connected Automated Trucks in Traffic
,”
Proceedings of the 2018 American Control Conference
,
Milwaukee, WI
,
June 27–29
, pp.
5576
5581
.
4.
Xu
,
C.
,
Geyer
,
S.
, and
Fathy
,
H. K.
,
2019
, “
Formulation and Comparison of Two Real-Time Predictive Gear Shift Algorithms for Connected/Automated Heavy-Duty Vehicles
,”
IEEE Trans. Vehicular Technol.
,
68
(
8
), pp.
7498
7510
.
5.
Korayem
,
A.
,
Khajepour
,
A.
, and
Fidan
,
B.
,
2021
, “
A Review on Vehicle-Trailer State and Parameter Estimation
,”
IEEE Trans. Intell. Transp. Syst.
, Early Access, pp.
1
18
.
6.
Viehweger
,
M.
,
Vaseur
,
C.
,
van Aalst
,
S.
,
Acosta
,
M.
,
Regolin
,
E.
,
Alatorre
,
A.
,
Desmet
,
W.
,
Naets
,
F.
,
Ivanov
,
V.
,
Ferrara
,
A.
, and
Victorino
,
A.
,
2021
, “
Vehicle State and Tyre Force Estimation: Demonstrations and Guidelines
,”
Vehicle Syst. Dyn.
,
59
(
5
), pp.
675
702
.
7.
Guo
,
H.
,
Cao
,
D.
,
Chen
,
H.
,
Lv
,
C.
,
Wang
,
H.
, and
Yang
,
S.
,
2018
, “
Vehicle Dynamic State Estimation: State of the Art Schemes and Perspectives
,”
IEEE/CAA J. Automatica Sinica
,
5
(
2
), pp.
418
431
.
8.
Bae
,
H. S.
,
Ryu
,
J.
, and
Gerdes
,
J. C.
,
2001
, “
Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using GPS
,”
2001 IEEE Intelligent Transportation Systems Conference
,
Oakland, CA
,
Aug. 25–29
, pp.
166
171
.
9.
Fathy
,
H. K.
,
Kang
,
D.
, and
Stein
,
J. L.
,
2008
, “
Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,”
Proceedings of the 2008 American Control Conference (ACC)
,
Seattle, WA
,
June 11–13
, pp.
1842
1848
.
10.
Vahidi
,
A.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2005
, “
Recursive Least Squares With Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory and Experiments
,”
Vehicle Syst. Dyn.
,
43
(
1
), pp.
31
55
.
11.
Rhode
,
S.
, and
Gauterin
,
F.
,
2013
, “
Online Estimation of Vehicle Driving Resistance Parameters With Recursive Least Squares and Recursive Total Least Squares
,”
Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV)
,
Gold Coast, Australia
,
June 23–26
, pp.
269
276
.
12.
Paulsson
,
E.
, and
Asman
,
L.
,
2016
, “
Vehicle Mass and Road Grade Estimation using Recursive Least Squares
,” M.Sc. Thesis, Department of Automatic Control, Lund University, Lund, Sweden.
13.
Lin
,
N.
,
Zong
,
C.
, and
Shi
,
S.
,
2018
, “
The Method of Mass Estimation Considering System Error in Vehicle Longitudinal Dynamics
,”
Energies
,
12
(
1
), pp.
52
67
.
14.
Mahyuddin
,
M.
,
Na
,
J.
,
Herrman
,
G.
,
Ren
,
X.
, and
Barber
,
P.
,
2014
, “
Adaptive Observer-Based Parameter Estimation With Application to Road Gradient and Vehicle Mass Estimation
,”
IEEE. Trans. Ind. Electron.
,
61
(
6
), pp.
2851
2863
.
15.
Rajamani
,
R.
, and
Hedrick
,
J. K.
,
1995
, “
Adaptive Observers for Active Automotive Suspensions: Theory and Experiment
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
86
93
.
16.
Pence
,
B.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2009
, “
Sprung Mass Estimation for Off-Road Vehicles Via Base-Excitation Suspension Dynamics and Recursive Least Squares
,”
Proceedings of the 2009 American Control Conference
,
St. Louis, MO
,
June 10–12
, pp.
5043
5048
.
17.
Reina
,
G.
,
Paiano
,
M.
, and
Blanco-Claraco
,
J.
,
2017
, “
Vehicle Parameter Estimation Using a Model-Based Estimator
,”
Mech. Syst. Signal. Process.
,
87
(
Part B
), pp.
227
241
.
18.
Hernandez
,
S.
, and
Hyun
,
K.
,
2020
, “
Fusion of Weigh-in-Motion and Global Positioning System Data to Estimate Truck Weight Distributions at Traffic Count Sites
,”
Vehicle Syst. Dyn.
,
24
(
2
), pp.
201
215
.
19.
Korayem
,
A.
,
Khajepour
,
A.
, and
Fidan
,
B.
,
2020
, “
Trailer Mass Estimation Using System Model-Based and Machine Learning Approaches
,”
IEEE Trans. Vehicular Technol.
,
69
(
11
), pp.
12536
12546
.
20.
Bellman
,
R.
, and
Astrom
,
K. J.
,
1970
, “
On Structural Identifiability
,”
Math. Biosci.
,
7
(
3-4
), pp.
329
339
.
21.
Kandel
,
A. I.
,
Wahba
,
M.
,
Geyer
,
S.
, and
Fathy
,
H. K.
,
2018
, “
Impact of Terrain Variability on Chassis Parameter Identifiability for a Heavy-Duty Vehicle
,”
Proceedings of the 2018 European Control Conference (ECC)
,
Limassol, Cyprus
,
June 12–15
, pp.
2812
2817
.
22.
SAE International
,
2008
, “
SAE Standard J2263: Road Load Measurement Using Onboard Anemometry and Coastdown Techniques
,” Light Duty Vehicle Performance and Economy Measure Committee, SAE International, pp.
1
12
.
23.
Muller
,
T.
,
Ferris
,
J.
,
Detweiler
,
Z.
, and
Smith
,
H.
,
2009
, “
Identifying Vehicle Model Parameters Using Measured Terrain Excitations
,”
SAE World Congress & Exhibition
,
Detroit, MI
,
Apr. 20–23
.
24.
Norton
,
J. P.
,
1986
,
An Introduction to Identification
, 1st ed.,
Dover
,
New York
.
25.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
, 2nd ed., Vol.
14
,
Springer
,
New York
.
26.
Thomas
,
J.
, and
Cover
,
T.
,
1991
,
Elements of Information Theory
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.