There are some typesetting errors in the “Adaptive computations to pressure profile for creeping flow of a non-Newtonian fluid with fluid non-constant density effects,” which are proposed as follows:

  • In Eq. (8), σB021+m2Cos(γ)(UCos(βγ)VSin(γ))gρf[ς(TT0)+ς*(CC0)]+ρ(T,C)gSin(α), should be σB021+m2Cos(γ)(UCos(γ)VSin(γ))gρf[ς(TT0)+ς*(CC0)]+ρ(T,C)gSin(ϵ), it is like in the work by Hussain and Farooq [1], they studied the Gyrotactic micro-organisms swimming of peristaltic flow in esophagus.

  • The non-dimensional quantities Nb=τDBC0ν,Nt=τDBT0ν, which are defined as in the recent published works in Refs. [24].

  • The definition of fluid density in the paper in Ref. [5], which is the same as presented in Eq. (3) by Ref. [6], and the authors state that according to the Boussinesq approximation, this dependence of the density is taken into account only within the buoyancy term. The sign of β indicates whether the colloidal particles have a higher or a lower mass density compared to the solvent. Here, we assume β>0 corresponding to ε<1.

  • The dimensionless of some parameters are missing in the paper [5], like P=d12cλη0p, η=ρfd12Kμ0, Ec=c2cf(T1T0), which is the same in Refs. [610].

References

1.
Hussain
,
A.
, and
Farooq
,
N.
,
2023
, “
Gyrotactic Micro-Organisms Swimming Under the Hyperbolic Tangent Blood Nano Material and Solar Biomimetic System Over the Esophagus
,”
Int. Commun. Heat Mass Transfer
,
141
, p.
106579
.10.1016/j.icheatmasstransfer.2022.106579
2.
Akbar
,
N. S.
,
Nadeem
,
S.
,
Hayat
,
T.
, and
Hendi
,
A. A.
,
2011
, “
Effects of Heat and Mass Transfer on the Peristaltic flow of Hyperbolic Tangent fluid in an Annulus
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4360
4369
.10.1016/j.ijheatmasstransfer.2011.03.064
3.
Nadeem
,
S.
, and
Akbar
,
N. S.
,
2010
, “
Series Solutions for the Peristaltic flow of a Tangent Hyperbolic fluid in a Uniform Inclined Tube
,”
Z. Für Naturforsch. A
,
65
(
11
), pp.
887
895
.10.1515/zna-2010-1101
4.
Nadeem
,
S.
, and
Maraj
,
E. N.
,
2013
, “
The Mathematical Analysis for Peristaltic flow of Hyperbolic Tangent fluid in a Curved Channel
,”
Commun. Theor. Phys.
,
59
(
6
), pp.
729
736
.10.1088/0253-6102/59/6/14
5.
Ibrahim
,
M. G.
,
2022
, “
Adaptive Computations to Pressure Profile for Creeping Flow of a Non-Newtonian Fluid With Fluid Nonconstant Density Effects
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
10
), p.
103602
.10.1115/1.4055092
6.
Glassl
,
M.
,
Hilt
,
M.
, and
Zimmermann
,
W.
,
2011
, “
Convection in Nanofluids With a Particle-Concentration-Dependent Thermal Conductivity
,”
Phys. Rev. E
,
83
(
4
), p.
046315
.10.1103/PhysRevE.83.046315
7.
Asfour
,
H. A. H.
, and
Ibrahim
,
M. G.
,
2023
, “
Numerical Simulations and Shear Stress Behavioral for Electro-Osmotic Blood Flow of Magneto Sutterby Nanofluid With Modified Darcy's Law
,”
Therm. Sci. Eng. Prog.
,
37
(
1
), p.
101599
.10.1016/j.tsep.2022.101599
8.
Naseer
,
M.
,
Malik
,
M. Y.
,
Nadeem
,
S.
, and
Rehman
,
A.
,
2014
, “
The Boundary Layer flow of Hyperbolic Tangent fluid Over a Vertical Exponentially Stretching Cylinder
,”
Alexandria Eng. J
,
53
(
3
), pp.
747
750
.10.1016/j.aej.2014.05.001
9.
Bhatti
,
M. M.
,
Zeeshan
,
A.
, and
Ellahi
,
R.
,
2017
, “
Simultaneous Effects of Coagulation and Variable Magnetic Feld on Peristaltically Induced Motion of Jeffrey Nanofluid Containing Gyrotactic Microorganism
,”
Microvasc. Res.
,
110
, pp.
32
42
.10.1016/j.mvr.2016.11.007
10.
Kothandapani
,
M.
, and
Prakash
,
J.
,
2015
, “
Effect of Radiation and Magnetic Feld on Peristaltic Transport of Nanofluids Through a Porous Space in a Tapered Asymmetric Channel
,”
J. Magn. Magn. Mater.
,
378
, pp.
152
163
.10.1016/j.jmmm.2014.11.031