The paper presents the outcome of finite-difference calculations of turbulent flow near spinning cones, disks, and cylinders. The turbulence model used is a version of the mixing-length hypothesis in which the mixing length which would prevail in the absence of swirl is made a linear function of the local “swirling flow” Richardson number. Agreement with available experimental data for these geometries is generally good. At high swirl rates, however, a few systematic differences between experiment and calculation become evident which are probably attributable to the nonisotropic nature of the effective viscosity in such complex strain fields.

This content is only available via PDF.
You do not currently have access to this content.