Abstract

This work elucidates a rigorous numerical analysis of predicting the fluidic behavior and pattern of thermal field around the rotating finned sphere suspended in ambient air. Mixed convection analysis is carried out within the laminar regime by considering important pertinent factors, such as fin height (0.1h/D0.33), fin spacing (0.0719S/D0.7786), Rayleigh number (102Ra105), and strength of rotational field (0Re300). A low-temperature zone within the spacing between the fins is predicted to form when Re 0 compared to Re= 0 and this fluidic behavior is clearly understood employing velocity vectors. Thus, the heat removal rate is predicted to be higher in the spinning condition than nonspinning case. The heat transfer rate (Q) grows continually with the reduction of S/D and reaches a maximum magnitude till a certain lower value of S/D then it starts to drop dramatically. The maximum peak point of Q is gradually shifts toward the lower value of S/D as the magnitude of Re is higher. We have also characterized the behavior of average (Nu) and local (Nul) Nusselt number. Behavior of Nu witnesses an increasing trend as S/D grows for a given h/D, Ra, and Re. A steeper increasing pattern of Nu against S/D at a higher Re compared to a lower Re. Finally, a suitable correlation for average Nusselt number was developed using pertinent parameters which shows a satisfactory agreement with numerical data.

References

1.
Kar
,
P. K.
,
Chetan
,
U.
,
Sahu
,
T. L.
,
Sharma
,
A.
,
Dhopeshwar
,
S.
,
Das
,
P. K.
, and
Lakkaraju
,
R.
,
2024
, “
The Impact of Roughness and Partitions in Thermal Convection to Enhance the Heat Transport
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
10
), p.
101801
.10.1115/1.4065677
2.
Shah
,
A.
, and
Rana
,
B. K.
,
2023
, “
Numerical Investigation of Free Convection Around a Pair of Vertically-Aligned Isothermally-Heated Vertical Hollow Cylinders
,”
Numer. Heat Transfer, Part A Appl.
, 85(20), pp.
1
24
.10.1080/10407782.2023.2236792
3.
Shah
,
A.
, and
Rana
,
B. K.
,
2023
, “
Effect of Adiabatic Ground on Thermofluidic Behavior and Cooling Time Analysis From a Hollow Tube
,”
Numer. Heat Transfer, Part B Fundam.
,
86
(
4
), pp.
1
22
.10.1080/10407790.2023.2299681
4.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2023
, “
Natural Convection From an Isothermally Heated Hollow Vertical Cylinder Submerged in Quiescent Power-Law Fluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021003
.10.1115/1.4055824
5.
Vakacharla
,
B. K.
, and
Rana
,
B. K.
,
2022
, “
Free Convection Heat Transfer From a Spherical Shaped Open Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
9
), p.
092601
.10.1115/1.4054773
6.
Sun
,
H.
,
Atkins
,
M. D.
,
Kang
,
K.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2024
, “
Extended Neumann's Solution Accounting for Rayleigh–Bénard Convection in the Melt Layer of a Phase Change Material
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
8
), p.
082402
.10.1115/1.4065351
7.
Rana
,
B. K.
,
2023
, “
Thermofluidic Analysis Around a Heated Hollow Spherical Ring Immersed in Air
,”
Numer. Heat Transfer, Part A: Appl.
,
86
(
3
), pp.
1
22
.10.1080/10407782.2023.2265554
8.
Rana
,
B. K.
,
2022
, “
Conjugate Steady Natural Convection Analysis Around Thick Tapered Vertical Pipe Suspended in the Air
,”
Sādhanā
,
47
(
1
), pp.
1
16
.10.1007/s12046-021-01780-4
9.
Srinivasan
,
V.
,
2024
, “
Rayleigh-Bènard Convection in a Gas-Saturated Porous Medium at Low Darcy Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
5
), p.
051001
.10.1115/1.4064327
10.
Rana
,
B. K.
,
2022
, “
Numerical Investigation on Free Convection From an Isothermally Heated Hollow Inclined Cylinder Suspended in Air
,”
Numer. Heat Transfer, Part A Appl.
,
83
(
11
), pp.
1
25
.10.1080/10407782.2022.2102398
11.
Avramenko
,
A.
,
Shevchuk
,
I.
, and
Kobzar
,
A.
,
2025
, “
Discrete Symmetry Analysis of Free Convection in a Cylindrical Porous Annular Microchannel at Low-Pressure Level
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
147
(
6
), p.
062701
.10.1115/1.4067609
12.
Carvalho
,
P. H.
, and
de Lemos
,
M. J.
,
2017
, “
Effect of Thermal Conductivity Ratio on Laminar Double-Diffusive Free Convection in a Porous Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
10
), p.
104506
.10.1115/1.4036617
13.
Sivasankaran
,
S.
,
Sivakumar
,
V.
, and
Hussein
,
A. K.
,
2013
, “
Numerical Study on Mixed Convection in an Inclined Lid-Driven Cavity With Discrete Heating
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
112
125
.10.1016/j.icheatmasstransfer.2013.05.022
14.
Sivasankaran
,
S.
,
Sivakumar
,
V.
,
Hussein
,
A. K.
, and
Prakash
,
P.
,
2014
, “
Mixed Convection in a Lid-Driven Two-Dimensional Square Cavity With Corner Heating and Internal Heat Generation
,”
Numer. Heat Transfer, Part A Appl.
,
65
(
3
), pp.
269
286
.10.1080/10407782.2013.826017
15.
Hussein
,
A. K.
, and
Hussain
,
S. H.
,
2015
, “
Characteristics of Magnetohydrodynamic Mixed Convection in a Parallel Motion Two-Sided Lid-Driven Differentially Heated Parallelogrammic Cavity With Various Skew Angles
,”
J. Therm. Eng.
,
1
(
3
), pp.
221
235
.10.18186/jte.66113
16.
Saha
,
S.
,
Hussein
,
A. K.
,
Saha
,
G.
, and
Hussain
,
S.
,
2011
, “
Mixed Convection in a Tilted Lid-Driven Square Enclosure With Adiabatic Cylinder at the Center
,”
Int. J. Heat Technol.
,
29
(
1
), pp.
143
156
.https://www.researchgate.net/publication/236887392_Mixed_Convection_in_a_Tilted_Lid-Driven_Square_Enclosure_with_Adiabatic_Cylinder_at_the_Center
17.
Bhuvaneswari
,
M.
,
Eswaramoorthi
,
S.
,
Sivasankaran
,
S.
, and
Hussein
,
A. K.
,
2019
, “
Cross-Diffusion Effects on MHD Mixed Convection Over a Stretching Surface in a Porous Medium With Chemical Reaction and Convective Condition
,”
Eng. Trans.
,
67
(
1
), pp.
3
19
.
18.
Mansour
,
M. A.
,
Rashad
,
A. M.
,
Mallikarjuna
,
B.
,
Hussein
,
A. K.
,
Aichouni
,
M.
, and
Kolsi
,
L.
,
2019
, “
MHD Mixed Bioconvection in a Square Porous Cavity Filled by Gyrotactic Microorganisms
,”
Int. J. Heat Technol.
,
37
(
2
), pp.
433
445
.10.18280/ijht.370209
19.
Laouira
,
H.
,
Mebarek‐Oudina
,
F.
,
Hussein
,
A. K.
,
Kolsi
,
L.
,
Merah
,
A.
, and
Younis
,
O.
,
2020
, “
Heat Transfer Inside a Horizontal Channel With an Open Trapezoidal Enclosure Subjected to a Heat Source of Different Lengths
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
406
423
.10.1002/htj.21618
20.
Ismael
,
M. A.
,
Hussein
,
A. K.
,
Mebarek-Oudina
,
F.
, and
Kolsi
,
L.
,
2020
, “
Effect of Driven Sidewalls on Mixed Convection in an Open Trapezoidal Cavity With a Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
8
), p.
082601
.10.1115/1.4047049
21.
Mohammed
,
H. A.
,
Al-Aswadi
,
A. A.
,
Abu-Mulaweh
,
H. I.
,
Hussein
,
A. K.
, and
Kanna
,
P. R.
,
2014
, “
Mixed Convection Over a Backward-Facing Step in a Vertical Duct Using Nanofluids—Buoyancy Opposing Case
,”
J. Comput. Theor. Nanosci.
,
11
(
3
), pp.
860
872
.10.1166/jctn.2014.3339
22.
Kareem
,
A. K.
,
Mohammed
,
H. A.
,
Hussein
,
A. K.
, and
Gao
,
S.
,
2016
, “
Numerical Investigation of Mixed Convection Heat Transfer of Nanofluids in a Lid-Driven Trapezoidal Cavity
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
195
205
.10.1016/j.icheatmasstransfer.2016.08.010
23.
Shah
,
A.
, and
Rana
,
B. K.
,
2024
, “
Mixed Convection Flows From a Revolving Cylindrical Cavity
,”
Numer. Heat Transfer, Part A Appl.
, pp.
1
25
.10.1080/10407782.2024.2353354
24.
Al-Rashed
,
A. A.
,
Aich
,
W.
,
Kolsi
,
L.
,
Mahian
,
O.
,
Hussein
,
A. K.
, and
Borjini
,
M. N.
,
2017
, “
Effects of Movable-Baffle on Heat Transfer and Entropy Generation in a Cavity Saturated by CNT Suspensions: Three-Dimensional Modeling
,”
Entropy
,
19
(
5
), p.
200
.10.3390/e19050200
25.
Hussein
,
A. K.
,
2018
, “
Entropy Generation Due to the Transient Mixed Convection in a Three-Dimensional Right-Angle Triangular Cavity
,”
Int. J. Mech. Sci.
,
146–147
, pp.
141
151
.10.1016/j.ijmecsci.2018.07.012
26.
Ahmed
,
S. E.
,
Mansour
,
M. A.
,
Hussein
,
A. K.
,
Mallikarjuna
,
B.
,
Almeshaal
,
M. A.
, and
Kolsi
,
L.
,
2019
, “
MHD Mixed Convection in an Inclined Cavity Containing Adiabatic Obstacle and Filled With Cu–Water Nanofluid in the Presence of the Heat Generation and Partial Slip
,”
J. Therm. Anal. Calorim.
,
138
(
2
), pp.
1443
1460
.10.1007/s10973-019-08340-3
27.
Rana
,
B. K.
,
Singh
,
B.
, and
Senapati
,
J. R.
,
2021
, “
Thermofluid Characteristics on Natural and Mixed Convection Heat Transfer From a Vertical Rotating Hollow Cylinder Immersed in Air: A Numerical Exercise
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
022601
.10.1115/1.4048830
28.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2021
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
042101
.10.1115/1.4049839
29.
Gorai
,
S.
,
Samanta
,
D.
, and
Das
,
S. K.
,
2024
, “
Experimental Investigations of Heat Transfer in Simultaneously Developing Transitional Regime of Mixed Convection Flows in a Vertical Tube
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
10
), p.
102601
.10.1115/1.4065609
30.
Nassira
,
N.
, and
Amina
,
M.
,
2024
, “
Numerical Study of Mixed Convection of Buoyant Twin Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
3
), p.
031001
.10.1115/1.4063959
31.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2011
, “
Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure With a Conductive Rotating Circular Cylinder at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
263
274
.10.1016/j.icheatmasstransfer.2010.12.006
32.
Mallikarjuna
,
B.
,
Rashad
,
A. M.
,
Hussein
,
A. K.
, and
Hariprasad Raju
,
S.
,
2016
, “
Transpiration and Thermophoresis Effects on Non-Darcy Convective Flow Past a Rotating Cone With Thermal Radiation
,”
Arabian J. Sci. Eng.
,
41
(
11
), pp.
4691
4700
.10.1007/s13369-016-2252-x
33.
Ali
,
F. H.
,
Hamzah
,
H. K.
,
Hussein
,
A. K.
,
Jabbar
,
M. Y.
, and
Talebizadehsardari
,
P.
,
2020
, “
MHD Mixed Convection Due to a Rotating Circular Cylinder in a Trapezoidal Enclosure Filled With a Nanofluid Saturated With a Porous Media
,”
Int. J. Mech. Sci.
,
181
, p.
105688
.10.1016/j.ijmecsci.2020.105688
34.
Soufiane
,
N.
,
Mustapha
,
A. H.
,
Zakaria
,
L.
,
Sakina
,
E. H.
, and
Hicham
,
D.
,
2023
, “
Numerical Simulation of Mixed Convection Cooling of Electronic Component Within a Lid-Driven Cubic Cavity Filled With Nanofluid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
9
), p.
091502
.10.1115/1.4062564
35.
Chiang
,
T.
,
Ossin
,
A.
, and
Tien
,
C. L.
,
1964
, “
Laminar Free Convection From a Sphere
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
86
(
4
), pp.
537
541
.10.1115/1.3688739
36.
Hieber
,
C. A.
, and
Gebhart
,
B.
,
1969
, “
Mixed Convection From a Sphere at Small Reynolds and Grashof Numbers
,”
J. Fluid Mech.
,
38
(
1
), pp.
137
159
.10.1017/S0022112069000097
37.
Amato
,
W. S.
, and
Chi
,
T.
,
1972
, “
Free Convection Heat Transfer From Isothermal Spheres in Water
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
327
339
.10.1016/0017-9310(72)90078-6
38.
Chen
,
T. S.
, and
Mucoglu
,
A.
,
1977
, “
Analysis of Mixed Forced and Free Convection About a Sphere
,”
Int. J. Heat Mass Transfer
,
20
(
8
), pp.
867
875
.10.1016/0017-9310(77)90116-8
39.
Chen
,
T. S.
, and
Mucoglu
,
A.
,
1978
, “
Mixed Convection About a Sphere With Uniform Surface Heat Flux
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
3
), pp.
542
544
.10.1115/1.3450846
40.
Wong
,
K. L.
,
Lee
,
S. C.
, and
Chen
,
C. K.
,
1986
, “
Finite Element Solution of Laminar Combined Convection From a Sphere
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
4
), pp.
860
865
.10.1115/1.3247024
41.
Geoola
,
F.
, and
Cornish
,
A. R. H.
,
1981
, “
Numerical Solution of Steady-State Free Convective Heat Transfer From a Solid Sphere
,”
Int. J. Heat Mass Transfer
,
24
(
8
), pp.
1369
1379
.10.1016/0017-9310(81)90187-3
42.
Geoola
,
F.
, and
Cornish
,
A. R. H.
,
1982
, “
Numerical Simulation of Free Convective Heat Transfer From a Sphere
,”
Int. J. Heat Mass Transfer
,
25
(
11
), pp.
1677
1687
.10.1016/0017-9310(82)90147-8
43.
Dudek
,
D. R.
,
Fletcher
,
T. H.
,
Longwell
,
J. P.
, and
Sarofim
,
A. F.
,
1988
, “
Natural Convection Induced Drag Forces on Spheres at Low Grashof Numbers: Comparison of Theory With Experiment
,”
Int. J. Heat Mass Transfer
,
31
(
4
), pp.
863
873
.10.1016/0017-9310(88)90143-3
44.
Nguyen
,
H. D.
,
Paik
,
S.
, and
Chung
,
J. N.
,
1993
, “
Unsteady Mixed Convection Heat Transfer From a Solid Sphere: The Conjugate Problem
,”
Int. J. Heat Mass Transfer
,
36
(
18
), pp.
4443
4453
.10.1016/0017-9310(93)90128-S
45.
Jia
,
H.
, and
Gogos
,
G.
,
1996
, “
Laminar Natural Convection Heat Transfer From Isothermal Spheres
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1603
1615
.10.1016/0017-9310(95)00259-6
46.
Ziskind
,
G.
,
Zhao
,
B.
,
Katoshevski
,
D.
, and
Bar-Ziv
,
E.
,
2001
, “
Experimental Study of the Forces Associated With Mixed Convection From a Heated Sphere at Small Reynolds and Grashof Numbers. Part I: Cross-Flow
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4381
4389
.10.1016/S0017-9310(01)00095-3
47.
Mograbi
,
E.
,
Ziskind
,
G.
,
Katoshevski
,
D.
, and
Bar-Ziv
,
E.
,
2002
, “
Experimental Study of the Forces Associated With Mixed Convection From a Heated Sphere at Small Reynolds and Grashof Numbers. Part II: Assisting and Opposing Flows
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2423
2430
.10.1016/S0017-9310(01)00350-7
48.
Yang
,
S.
,
Raghavan
,
V.
, and
Gogos
,
G.
,
2007
, “
Numerical Study of Transient Laminar Natural Convection Over an Isothermal Sphere
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
821
837
.10.1016/j.ijheatfluidflow.2006.08.004
49.
Prhashanna
,
A.
, and
Chhabra
,
R. P.
,
2010
, “
Free Convection in Power-Law Fluids From a Heated Sphere
,”
Chem. Eng. Sci.
,
65
(
23
), pp.
6190
6205
.10.1016/j.ces.2010.09.003
50.
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2013
, “
Mixed Convection From a Heated Sphere in Power-Law Fluids
,”
Chem. Eng. Sci.
,
89
, pp.
49
71
.10.1016/j.ces.2012.11.031
51.
Nirmalkar
,
N.
,
Chhabra
,
R. P.
, and
Poole
,
R. J.
,
2013
, “
Effect of Shear-Thinning Behavior on Heat Transfer From a Heated Sphere in Yield-Stress Fluids
,”
Ind. Eng. Chem. Res.
,
52
(
37
), pp.
13490
13504
.10.1021/ie402109k
52.
Nirmalkar
,
N.
,
Gupta
,
A. K.
, and
Chhabra
,
R. P.
,
2014
, “
Natural Convection From a Heated Sphere in Bingham Plastic Fluids
,”
Ind. Eng. Chem. Res.
,
53
(
45
), pp.
17818
17832
.10.1021/ie503152k
53.
Kitamura
,
K.
,
Mitsuishi
,
A.
,
Suzuki
,
T.
, and
Misumi
,
T.
,
2015
, “
Fluid Flow and Heat Transfer of high-Rayleigh-Number Natural Convection Around Heated Spheres
,”
Int. J. Heat Mass Transfer
,
86
, pp.
149
157
.10.1016/j.ijheatmasstransfer.2015.02.081
54.
Singh
,
B.
, and
Dash
,
S. K.
,
2015
, “
Natural Convection Heat Transfer From a Finned Sphere
,”
Int. J. Heat Mass Transfer
,
81
, pp.
305
324
.10.1016/j.ijheatmasstransfer.2014.10.028
55.
Raju
,
B. H. S.
,
Nath
,
D.
, and
Pati
,
S.
,
2018
, “
Effect of Prandtl Number on Thermo-Fluidic Transport Characteristics for Mixed Convection Past a Sphere
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
191
199
.10.1016/j.icheatmasstransfer.2018.08.013
56.
Raju
,
B. H. S.
,
Nath
,
D.
,
Pati
,
S.
, and
Baranyi
,
L.
,
2020
, “
Analysis of Mixed Convective Heat Transfer From a Sphere With an Aligned Magnetic Field
,”
Int. J. Heat Mass Transfer
,
162
, p.
120342
.10.1016/j.ijheatmasstransfer.2020.120342
57.
Pimenta
,
F.
, and
Alves
,
M. A.
,
2021
, “
Conjugate Heat Transfer in the Unbounded Flow of a Viscoelastic Fluid Past a Sphere
,”
Int. J. Heat Fluid Flow
,
89
, p.
108784
.10.1016/j.ijheatfluidflow.2021.108784
58.
Garnayak
,
S.
, and
Rath
,
S.
,
2021
, “
Numerical Computation on Natural Convection Heat Transfer From an Isothermal Sphere With Semicircular Ribs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
9
), p.
092601
.10.1115/1.4051603
59.
Rodriguez
,
I.
, and
Campo
,
A.
,
2023
, “
Numerical Investigation of Forced Convection Heat Transfer From a Sphere at Low Prandtl Numbers
,”
Int. J. Therm. Sci.
,
184
, p.
107970
.10.1016/j.ijthermalsci.2022.107970
60.
Rana
,
B. K.
,
2023
, “
Mixed Convection Heat Transfer From Swirling Open Spherical Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
6
), p.
062601
.10.1115/1.4056372
61.
Suri
,
P.
,
Verma
,
A.
,
Patel
,
S. A.
, and
Chhabra
,
R. P.
,
2023
, “
Free Convection From a Single and a Pair of Spheres in Power-Law Fluids at Very Small Grashof Numbers
,”
J. Non-Newtonian Fluid Mech.
,
320
, p.
105109
.10.1016/j.jnnfm.2023.105109
62.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Numerical Simulation and Analytical Prediction on the Development of Entrained Air Filament Caused by the Combined Effect of Rotational Field and Free Stream Flow
,”
Ind. Eng. Chem. Res.
,
61
(
26
), pp.
9456
9473
.10.1021/acs.iecr.2c00684
63.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Numerical Study of Air Entrainment and Liquid Film Wrapping Around a Rotating Cylinder
,”
Ind. Eng. Chem. Res.
,
55
(
46
), pp.
11950
11960
.10.1021/acs.iecr.6b03477
64.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Influence of the Immersion Ratio of a Revolving Roller on the Film Coating and Entrainment Dynamics
,”
Ind. Eng. Chem. Res.
,
62
(
15
), pp.
6285
6300
.10.1021/acs.iecr.3c00095
65.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Numerical Observation and Analytical Formulation of Droplet Impact and Spreading Around the Thin Vertical Cylinder
,”
Phys. Fluids
,
34
(
4
), p.
042114
.10.1063/5.0086811
66.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Collapse of a Taylor Bubble at a Free Surface
,”
Multiphase Sci. Technol.
,
28
(
2
), pp.
173
191
.10.1615/MultScienTechn.2017019092
67.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2024
, “
Influence of a Pair of Unequal Rotational Fluxes on Entrained Gaseous Filament
,”
ASME J. Fluids Eng.
,
146
(
12
), p.
121301
.10.1115/1.4065263
68.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Computational and Analytical Investigation of Droplet Impingement and Spreading Dynamics Around the Right Circular Cone
,”
Langmuir
,
38
(
48
), pp.
14891
14908
.10.1021/acs.langmuir.2c02567
69.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Towards the Understanding of Bubble-Bubble Interaction Upon Formation at Submerged Orifices: A Numerical Approach
,”
Chem. Eng. Sci.
,
161
, pp.
316
328
.10.1016/j.ces.2016.12.049
70.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Rotational Flux Influenced Cusp Entrainment in a Viscous Pool
,”
Phys. Fluids
,
34
(
10
), p.
102103
.10.1063/5.0118237
71.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Characterization of Air Entrainment Using a Pair of Vertically Aligned Revolving Rollers
,”
Ind. Eng. Chem. Res.
,
62
(
2
), pp.
998
1015
.10.1021/acs.iecr.2c04008
72.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Characterization of Droplet Collision and Breakup on a Hemispherical Target
,”
Ind. Eng. Chem. Res.
,
63
(
48
), pp.
20883
20902
.10.1021/acs.iecr.4c02358
73.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2021
, “
Competition of Roller Rotation and Horizontal Crossflow to Control the Free Surface Cusp-Induced Air Entrainment
,”
Phys. Fluids
,
33
(
11
), p.
112114
.10.1063/5.0069984
74.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Mechanism of Collision and Drainage of Liquid Droplet Around Sphere Placed Within a Hollow Cylinder
,”
Comput. Fluids
,
281
, p.
106365
.10.1016/j.compfluid.2024.106365
75.
Patel
,
J. K.
, and
Rana
,
B. K.
,
2024
, “
Role of Horizontal Crossflow on Gaseous Bubble Passage Through the Liquid–Liquid Interface
,”
Phys. Fluids
,
36
(
11
), p.
112123
.10.1063/5.0234993
76.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Gaseous Entrainment Dynamics in a Viscous Pool Due to Combined Influence of Asymmetric Rotational Field and Crossflow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021401
.10.1115/1.4055802
77.
Dhabekar
,
P. P.
,
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2023
, “
Towards Understanding of Spreading and Detachment During Droplet Impact Onto a Hemispherical Surface
,”
Eur. J. Mech.-B/Fluids
,
100
, pp.
52
66
.10.1016/j.euromechflu.2023.03.001
78.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2025
, “
Role of Crossflow and Immersion Ratio on Interfacial Flow When Swirling Drum Sinks Partly: A Computational Study
,”
Phys. Fluids
,
37
(
2
), p.
022117
.10.1063/5.0250467
79.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2024
, “
Interfacial Dynamics Around a Swirling Roller in the Presence of Oppositely Imposed Horizontal Crossflows
,”
ASME J. Fluids Eng.
,
146
(
1
), p.
011303
.10.1115/1.4063259
80.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Characterization of Droplet Impact Dynamics Onto a Stationary Solid Torus
,”
Phys. Fluids
,
36
(
2
), p.
022117
.10.1063/5.0186745
81.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2022
, “
Entrainment in Multifluid Systems, and Rotation Induced Occurrences
,”
Eur. J. Mech.-B/Fluids
,
96
, pp.
156
172
.10.1016/j.euromechflu.2022.08.001
82.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Understanding of Head-on Coalescence of Binary Drops Onto a Cylindrical Target
,”
Chem. Eng. Sci.
,
290
, p.
119886
.10.1016/j.ces.2024.119886
83.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Behavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021402
.10.1115/1.4055881
84.
Churchill
,
S. W.
,
1983
, “
Comprehensive, Theoretically Based, Correlating Equations for Free Convection From Isothermal Spheres
,”
Chem. Eng. Commun.
,
24
(
4–6
), pp.
339
352
.10.1080/00986448308940090
You do not currently have access to this content.