Abstract

Solving inverse heat conduction problems (IHCPs) is a critical challenge in many engineering applications. For typical engineering materials, the temperature dependence of thermophysical properties introduces nonlinearity, making IHCPs difficult to resolve. Moreover, measurement errors contained in thermophysical properties can further affect prediction accuracy. In this paper, linearization and Fourier's law are introduced to these equations to ensure the application of Laplace transform. Based on this calibration integral equation, the temperature-dependent volumetric heat capacity is required, while thermal conductivity measurement can be avoided. Numerical simulations demonstrate that, under 2% in-depth measurement noise, the relative root-mean-square errors (RRMSEs) of the predicted surface heat flux are approximately 8%. This level of accuracy is highly acceptable, especially considering that the thermal conductivity is unknown and not provided as a model input.

References

1.
Coşkun
,
T.
, and
Çetkin
,
E.
,
2023
, “
Cold Plate Enabling Air and Liquid Cooling Simultaneously: Experimental Study for Battery Pack Thermal Management and Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
217
, p.
124702
.10.1016/j.ijheatmasstransfer.2023.124702
2.
Tong
,
W.
,
Fan
,
D.
,
Yang
,
Y.
, and
Li
,
Q.
,
2024
, “
Piezoelectric Micropump Cooler for High-Power Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
233
, p.
126062
.10.1016/j.ijheatmasstransfer.2024.126062
3.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
E-Prime - Adv. Electr. Eng., Electron. Energy
,
1
, p.
100009
.10.1016/j.prime.2021.100009
4.
Li
,
J.-Q.
,
Xia
,
X.-L.
,
Sun
,
C.
, and
Chen
,
X.
,
2024
, “
Estimation of Time-Dependent Laser Heat Flux Distribution Based on BPNN Improved by Multiple Population Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
233
, p.
125997
.10.1016/j.ijheatmasstransfer.2024.125997
5.
Nguyen
,
N. P.
,
Maghsoudi
,
E.
,
Roberts
,
S. N.
,
Hofmann
,
D. C.
, and
Kwon
,
B.
,
2024
, “
Understanding Heat Transfer and Flow Characteristics of Additively Manufactured Pin Fin Arrays Through Laser-Induced Fluorescence and Particle Image Velocimetry
,”
Int. J. Heat Mass Transfer
,
222
, p.
125198
.10.1016/j.ijheatmasstransfer.2024.125198
6.
Peruchi Pacheco da Silva
,
R.
,
Woodbury
,
K.
,
Samadi
,
F.
, and
Carpenter
,
J.
,
2024
, “
Band Heater Heat Flux Characterization Using Inverse Heat Conduction Problem Models
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
9
), p.
091101
.10.1115/1.4064731
7.
Hsu
,
P. T.
, and
Chu
,
Y. H.
,
2004
, “
An Inverse Non-Fourier Heat Conduction Problem Approach for Estimating the Boundary Condition in Electronic Device
,”
Appl. Math. Model.
,
28
(
7
), pp.
639
652
.10.1016/j.apm.2003.10.010
8.
Frankel
,
J. I.
,
Keyhani
,
M.
, and
Elkins
,
B. E.
,
2013
, “
Surface Heat Flux Prediction Through Physics-Based Calibration, Part 1: Theory
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
189
205
.10.2514/1.T3917
9.
Cui
,
M.
,
Zhao
,
Y.
,
Xu
,
B.
, and
Gao
,
X.-W.
,
2017
, “
A New Approach for Determining Damping Factors in Levenberg-Marquardt Algorithm for Solving an Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
107
, pp.
747
754
.10.1016/j.ijheatmasstransfer.2016.11.101
10.
Cheng
,
L.
,
Zhong
,
F.
,
Gu
,
H.
, and
Zhang
,
X.
,
2016
, “
Application of Conjugate Gradient Method for Estimation of the Wall Heat Flux of a Supersonic Combustor
,”
Int. J. Heat Mass Transfer
,
96
, pp.
249
255
.10.1016/j.ijheatmasstransfer.2016.01.036
11.
Zhang
,
C.
,
Li
,
B.-W.
,
Zhou
,
R.-R.
,
Li
,
P.-X.
, and
Huang
,
L.-Y.
,
2023
, “
Inverse Analysis of Radiative Properties of Internal Medium and Surface for Cylindrical System Using CSM-CGM Approach
,”
Int. J. Therm. Sci.
,
190
, p.
108329
.10.1016/j.ijthermalsci.2023.108329
12.
Sathavara
,
P.
,
Parwani
,
A. K.
, and
Chaudhuri
,
P.
,
2023
, “
Functional Estimation of Space and Time Varying Thermal Properties Using Modified Conjugate Gradient Method
,”
Int. J. Therm. Sci.
,
185
, p.
108116
.10.1016/j.ijthermalsci.2022.108116
13.
Olabiyi
,
R.
,
Pandey
,
H.
,
Hu
,
H.
, and
Iquebal
,
A.
,
2024
, “
A Bayesian Spatiotemporal Modeling Approach to the Inverse Heat Conduction Problem
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
9
), p.
091403
.10.1115/1.4065451
14.
Khan
,
A. I.
,
Billah
,
M. M.
,
Ying
,
C.
,
Liu
,
J.
, and
Dutta
,
P.
,
2021
, “
Bayesian Method for Parameter Estimation in Transient Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
166
, p.
120746
.10.1016/j.ijheatmasstransfer.2020.120746
15.
Khatoon
,
S.
,
Phirani
,
J.
, and
Bahga
,
S. S.
,
2023
, “
Fast Bayesian Inference for Inverse Heat Conduction Problem Using Polynomial Chaos and Karhunen–Loeve Expansions
,”
Appl. Therm. Eng.
,
219
, p.
119616
.10.1016/j.applthermaleng.2022.119616
16.
Szenasi
,
S.
, and
Felde
,
I.
,
2017
, “
Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem
,”
15th IEEE International Symposium on Applied Machine Intelligence and Informatics
(
SAMI
),
Herlany, Slovakia
, Jan. 26--28, pp.
387
391
.10.1109/SAMI.2017.7880340
17.
Zhao
,
J.
,
Fu
,
Z.
,
Jia
,
X.
, and
Cai
,
Y.
,
2016
, “
Inverse Determination of Thermal Conductivity in Lumber Based on Genetic Algorithms
,”
Holzforschung
,
70
(
3
), pp.
235
241
.10.1515/hf-2015-0019
18.
Allard
,
D.
, and
Najafi
,
H.
,
2024
, “
Genetic Algorithm as the Solution of Non-Linear Inverse Heat Conduction Problems: A Novel Sequential Approach
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
9
), p.
091404
.10.1115/1.4065452
19.
Qin
,
G.
,
Wang
,
Z.
,
Lin
,
F.
,
Wang
,
H.
, and
Guo
,
R.
,
2024
, “
An Accelerated Sequential Function Specification Method Based on LM Gradient for Transient Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
233
, p.
125998
.10.1016/j.ijheatmasstransfer.2024.125998
20.
Wang
,
S.
,
Xu
,
W.
,
Zhou
,
Y.
,
Li
,
Y.
, and
Song
,
J.
,
2023
, “
A Novel Defect Identification Design of Gas Pipeline Based on Inverse Heat Conduction Problem
,”
J. Therm. Anal. Calorim.
,
148
(
9
), pp.
3645
3658
.10.1007/s10973-023-11966-z
21.
Chen
,
H. C.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2017
, “
Nonlinear Inverse Heat Conduction: Digitally Filtered Space Marching With Phase-Plane and Cross-Correlation Analyses
,”
Numer. Heat Transfer B-Fundam.
,
72
(
2
), pp.
109
129
.10.1080/10407790.2017.1347004
22.
Chen
,
H. C.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2016
, “
Two-Dimensional Formulation for Inverse Heat Conduction Problems by the Calibration Integral Equation Method (CIEM)
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6588
6603
.10.1016/j.apm.2016.02.003
23.
Chen
,
H. C.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2018
, “
Two-Probe Calibration Integral Equation Method for Nonlinear Inverse Heat Conduction Problem of Surface Heat Flux Estimation
,”
Int. J. Heat Mass Transfer
,
121
, pp.
246
264
.10.1016/j.ijheatmasstransfer.2017.12.072
24.
Chen
,
H. C.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2018
, “
Nonlinear Inverse Heat Conduction Problem of Surface Temperature Estimation by Calibration Integral Equation Method
,”
Numer. Heat Transfer B-Fundam.
,
73
(
5
), pp.
263
291
.10.1080/10407790.2018.1464316
25.
Chen
,
Y. Y.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2016
, “
Nonlinear, Rescaling-Based Inverse Heat Conduction Calibration Method and Optimal Regularization Parameter Strategy
,”
J. Thermophys. Heat Transfer
,
30
(
1
), pp.
67
88
.10.2514/1.T4572
26.
Chen
,
Y. Y.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2017
, “
A New Front Surface Heat Flux Calibration Method for a 1-D Nonlinear Thermal System With a Time-Varying Back Boundary Condition
,”
J. Eng. Math.
,
105
(
1
), pp.
157
187
.10.1007/s10665-016-9888-0
27.
Molavi
,
H.
,
Rahmani
,
R. K.
,
Pourshaghaghy
,
A.
,
Tashnizi
,
E. S.
, and
Hakkaki-Fard
,
A.
,
2010
, “
Heat Flux Estimation in a Nonlinear Inverse Heat Conduction Problem With Moving Boundary
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
8
), p.
081301
.10.1115/1.4001305
28.
Cui
,
M.
,
Zhu
,
Q.
, and
Gao
,
X.
,
2014
, “
A Modified Conjugate Gradient Method for Transient Nonlinear Inverse Heat Conduction Problems: A Case Study for Identifying Temperature-Dependent Thermal Conductivities
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
9
), p.
091301
.10.1115/1.4027771
29.
Huang
,
S.
,
Tao
,
B.
,
Li
,
J.
, and
Yin
,
Z.
,
2019
, “
On-Line Heat Flux Estimation of a Nonlinear Heat Conduction System With Complex Geometry Using a Sequential Inverse Method and Artificial Neural Network
,”
Int. J. Heat Mass Transfer
,
143
, p.
118491
.10.1016/j.ijheatmasstransfer.2019.118491
30.
Khajehpour
,
S.
,
Hematiyan
,
M. R.
, and
Marin
,
L.
,
2013
, “
A Domain Decomposition Method for the Stable Analysis of Inverse Nonlinear Transient Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
125
134
.10.1016/j.ijheatmasstransfer.2012.10.075
31.
Yamasaki
,
M.
, and
Kawamura
,
Y.
,
2009
, “
Thermal Diffusivity and Thermal Conductivity of Mg–Zn–Rare Earth Element Alloys With Long-Period Stacking Ordered Phase
,”
Scr. Mater.
,
60
(
4
), pp.
264
267
.10.1016/j.scriptamat.2008.10.022
32.
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2014
, “
Phase-Plane and Cross-Correlation Analysis for Estimating Optimal Regularization in Inverse Heat Conduction
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
542
548
.10.2514/1.T4357
33.
Woodbury
,
K. A.
,
Najafi
,
H.
,
Monte
,
F.
, and
Beck
,
J. V.
,
2023
,
Inverse Heat Conduction
, John Wiley & Sons, Inc., Hoboken, NJ.
You do not currently have access to this content.