Abstract

Wall functions are often used in practical engineering analysis of turbulent boundary layers to approximate the near-wall mean velocity and temperature distributions and/or provide boundary conditions, by relating flow variables some distance from the wall to values of wall shear stress and heat flux. General wall functions are applicable throughout the entire inner boundary layer, including the viscous sublayer, buffer region, and logarithmic region. Several well-known general wall functions are available for mean velocity, but there are fewer options for mean temperature, especially in the form of simple algebraic expressions that require no numerical integration and which are applicable over a wide range of fluid Prandtl numbers. This technical brief presents a new general wall function formulation for mean velocity and temperature that satisfies these conditions. Because it is a relatively simple algebraic function, it is easily implemented into new or existing computational fluid dynamics (CFD) solvers. The new wall function is validated by comparison to direct numerical simulation (DNS) data for turbulent channel flow with 80 < Re < 5000 and 0.007 < Pr < 10.

References

1.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
2.
Reichardt
,
H.
,
1951
, “
Vollständige Darstellung Der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen
,”
Z. Angew. Math. Mech. (J. Appl. Math. Mech.)
,
31
(
7
), pp.
208
219
.10.1002/zamm.19510310704
3.
Manhart
,
M.
,
Peller
,
N.
, and
Brun
,
C.
,
2008
, “
Near-Wall Scaling for Turbulent Boundary Layers With Adverse Pressure Gradient
,”
Theor. Comput. Fluid Dyn.
,
22
(
3–4
), pp.
243
260
.10.1007/s00162-007-0055-0
4.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
5.
Huh
,
K. Y.
,
Chang
,
I. P.
, and
Martin
,
J. K.
,
1990
, “
A Comparison of Boundary Layer Treatments for Heat Transfer in IC Engines
,”
SAE
Paper No. 900252.10.4271/900252
6.
Jayatilleke
,
C. L. V.
,
1969
, “
The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer
,”
Prog. Heat Mass Transfer
,
1
, pp.
193
321
.https://ia600404.us.archive.org/27/items/in.ernet.dli.2015.147758/2015.147758.Progress-In-Heat-And-Mass-Transfer-Vol1_text.pdf
7.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
8.
Duponcheel
,
M.
,
Bricteux
,
L.
,
Manconi
,
M.
,
Winckelmans
,
G.
, and
Bartosiewicz
,
Y.
,
2014
, “
Assessment of RANS and Improved Near-Wall Modeling for Forced Convection at Low Prandtl Numbers Based on LES Up to = 2000Reτ
,”
Int. J. Heat Mass Transfer
,
75
, pp.
470
482
.10.1016/j.ijheatmasstransfer.2014.03.080
9.
Yang
,
X. I. A.
,
Sadique
,
J.
,
Mittal
,
R.
, and
Meneveau
,
C.
,
2015
, “
Integral Wall Model for Large Eddy Simulations of Wall Bounded Turbulent Flows
,”
Phys. Fluids
,
27
(
2
), p.
025112
.10.1063/1.4908072
10.
Wang
,
M.
, and
Moin
,
P.
,
2002
, “
Dynamic Wall Modeling for Large-Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
14
(
7
), pp.
2043
2051
.10.1063/1.1476668
11.
Craft
,
T. J.
,
Gant
,
S. E.
,
Iacovides
,
H.
, and
Launder
,
B. E.
,
2004
, “
A New Wall Function Strategy for Complex Turbulent Flows
,”
Numer. Heat Transfer, Part B
,
45
(
4
), pp.
301
318
.10.1080/10407790490277931
12.
Grötzbach
,
G.
,
2013
, “
Challenges in Low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.10.1016/j.nucengdes.2012.09.039
13.
Lluesma-Rodríguez
,
F.
,
Hoyas
,
S.
, and
Perez-Quiles
,
M. J.
,
2018
, “
Influence of the Computational Domain on DNS of Turbulent Heat Transfer Up to Reτ = 2000 for Pr = 0.71
,”
Int. J. Heat Mass Transfer
,
122
, pp.
983
992
.10.1016/j.ijheatmasstransfer.2018.02.047
14.
Alcántara-Ávila
,
F.
,
Hoyas
,
S.
, and
Pérez-Quiles
,
M. J.
,
2018
, “
DNS of Thermal Channel Flow Up to Reτ = 2000 for Medium to Low Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
127
, pp.
349
361
.10.1016/j.ijheatmasstransfer.2018.06.149
15.
Alcántara-Ávila
,
F.
,
Hoyas
,
S.
, and
Pérez-Quiles
,
M. J.
,
2021
, “
Direct Numerical Simulation of Thermal Channel Flow for Reτ = 5000 and Pr = 0.71
,”
J. Fluid Mech.
,
916
(
10
), p.
A29
.10.1017/jfm.2021.231
16.
Alcántara-Ávila
,
F.
, and
Hoyas
,
S.
,
2021
, “
Direct Numerical Simulation of Thermal Channel Flow for Medium-High Prandtl Numbers Up to Reτ = 2000
,”
Int. J. Heat Mass Transfer
,
176
, p.
121412
.10.1016/j.ijheatmasstransfer.2021.121412
17.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
482
491
.10.1016/S0142-727X(98)10026-7
18.
Tsukahara
,
T.
,
Seki
,
Y.
,
Kawamura
,
H.
, and
Tochio
,
D.
,
2005
, “
DNS of Turbulent Channel Flow at Very Low Reynolds Numbers
,”
Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena
,
Williamsburg, VA
, June 27--29, pp.
935
940
.
19.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
,
2001
, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to Reynolds Number Dependence
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
382
393
.10.1115/1.1366680
20.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
,
2004
, “
Surface Heat-Flux Fluctuations in a Turbulent Channel Flow Up to Reτ = 1020 With Pr = 0.025 and 0.71
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
404
419
.10.1016/j.ijheatfluidflow.2004.02.010
You do not currently have access to this content.