Abstract

In order to study the mixing process of cold and hot fluids in T-tubes with different momentum ratios and its influence on the thermal stress of the tubes, the large eddy simulation (LES) method was used to calculate the temperature fluctuations of the tube wall and tube fluids under different momentum ratios. Then, the thermal fluid–structure coupling calculation is carried out, and the influence rule of different momentum ratios on the thermal stress of T-tube is obtained. The results show that there are two reasons for the greater stress at the joint of the main branch pipe. On the one hand, under the same temperature difference, the larger the momentum ratio, the longer the downstream length, the smaller the temperature gradient, and therefore the smaller the temperature fluctuation, so there will be no huge thermal stress. On the other hand, the case 1 condition has the largest temperature difference compared to the other conditions in this study. The joint action of the two makes the thermal stress of the T-shaped tube reach the maximum under the case 1. Therefore, in order to ensure the safe operation of the nuclear power system and reduce the thermal stress of the pipeline, the momentum ratio of the main branch pipe fluid in the pipeline should be increased as much as possible, and the temperature difference between the cold and hot fluids should be reduced.

References

1.
Kimura
,
N.
,
Ogawa
,
H.
, and
Kamide
,
H.
,
2010
, “
Experimental Study on Fluid Mixing Phenomena in T-Pipe Junction With Upstream Elbow
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3055
3066
.10.1016/j.nucengdes.2010.05.019
2.
Chen
,
M. S.
,
Hsieh
,
H. E.
,
Zhang
,
Z. Y.
, and
Pei
,
B. S.
,
2015
, “
Experimental Investigation of Thermal Mixing Phenomena in a Tee Pipe
,”
Kerntechnik
,
80
(
2
), pp.
116
123
.10.3139/124.110467
3.
Hosseini
,
S. M.
,
Yuki
,
K.
, and
Hashizume
,
H.
,
2009
, “
Experimental Investigation of Flow Field Structure in Mixing Tee
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051103
.10.1115/1.3112383
4.
Menanteau
,
S.
,
Bougeard
,
D.
,
Harion
,
J. L.
, and
Muller
,
T.
,
2013
, “
Wall Temperature Fluctuations Measurements Downstream of a Pipe Junction Using Infrared Thermography
,”
Quant. Infrared Thermogr. J.
,
10
(
2
), pp.
172
187
.10.1080/17686733.2013.800691
5.
Miyoshi
,
K.
,
2023
, “
Temperature Characteristics of Penetration Flow Into a Branch Pipe Causing Thermal Fatigue at a T-Junction
,”
Nucl. Eng. Des.
,
403
, p.
112157
.10.1016/j.nucengdes.2023.112157
6.
Lin
,
Z.
,
Yang
,
L.
,
Tao
,
J. Y.
,
Li
,
X. J.
, and
Zheng
,
X.
,
2023
, “
Thermal Mixing Characteristics of T-Junction Incident Along Central Axis Based on Large-Eddy Simulations
,”
Appl. Therm. Eng.
,
221
, p.
119756
.10.1016/j.applthermaleng.2022.119756
7.
Tunstall
,
R.
,
Laurence
,
D.
,
Prosser
,
R.
, and
Skillen
,
A.
,
2016
, “
Large Eddy Simulation of a T-Junction With Upstream Elbow: The Role of Dean Vortices in Thermal Fatigue
,”
Appl. Therm. Eng.
,
107
, pp.
672
680
.10.1016/j.applthermaleng.2016.07.011
8.
Utanohara
,
Y.
,
Nakamura
,
A.
,
Miyoshi
,
K.
, and
Kasahara
,
N.
,
2016
, “
Numerical Simulation of Long-Period Fluid Temperature Fluctuation at a Mixing Tee for the Thermal Fatigue Problem
,”
Nucl. Eng. Des.
,
305
, pp.
639
652
.10.1016/j.nucengdes.2016.06.024
9.
Garrido
,
O. C.
,
El Shawish
,
S.
, and
Cizelj
,
L.
,
2016
, “
Uncertainties in the Thermal Fatigue Assessment of Pipes Under Turbulent Fluid Mixing Using an Improved Spectral Loading Approach
,”
Int. J. Fatigue
,
82
, pp.
550
560
.10.1016/j.ijfatigue.2015.09.010
10.
Ohira
,
K.
,
Ota
,
A.
,
Mukai
,
Y.
, and
Hosono
,
T.
,
2012
, “
Numerical Study of Flow and Heat-Transfer Characteristics of Cryogenic Slush Fluid in a Horizontal Circular Pipe (SLUSH-3D)
,”
Cryogenics
,
52
(
7–9
), pp.
428
440
.10.1016/j.cryogenics.2012.04.006
11.
Miyoshi
,
K.
,
Kamaya
,
M.
,
Utanohara
,
Y.
, and
Nakamura
,
A.
,
2016
, “
An Investigation of Thermal Stress Characteristics by Wall Temperature Measurements at a Mixing Tee
,”
Nucl. Eng. Des.
,
298
, pp.
109
120
.10.1016/j.nucengdes.2015.12.004
12.
Kamaya
,
M.
, and
Nakamura
,
A.
,
2011
, “
Thermal Stress Analysis for Fatigue Damage Evaluation at a Mixing Tee
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2674
2687
.10.1016/j.nucengdes.2011.05.029
13.
Kamaya
,
M.
,
2014
, “
Assessment of Thermal Fatigue Damage Caused by Local Fluid Temperature Fluctuation (Part I: Characteristics of Constraint and Stress Caused by Thermal Striation and Stratification)
,”
Nucl. Eng. Des.
,
268
, pp.
121
138
.10.1016/j.nucengdes.2013.12.041
14.
Kamaya
,
M.
, and
Miyoshi
,
K.
,
2017
, “
Thermal Fatigue Damage Assessment at Mixing Tees (Elastic-Plastic Deformation Effect on Stress and Strain Fluctuations)
,”
Nucl. Eng. Des.
,
318
, pp.
202
212
.10.1016/j.nucengdes.2017.04.022
15.
Xie
,
L.
,
Zhang
,
H.
,
Wu
,
S.
,
Shen
,
F.
,
Xin
,
J.
,
Huang
,
C.
,
Jiang
,
M.
,
Huang
,
Z.
,
Wang
,
W.
, and
Li
,
L.
,
2023
, “
Development of Two-Dimensional Temperature Field Solution Method Based on the Stress-Strain Response of 316 LN Stainless Steel at Cryogenic Temperatures
,”
Cryogenics
,
133
, p.
103713
.10.1016/j.cryogenics.2023.103713
16.
Do Kweon
,
H.
,
Kim
,
J. S.
, and
Lee
,
K. Y.
,
2008
, “
Fatigue Design of Nuclear Class 1 Piping Considering Thermal Stratification
,”
Nucl. Eng. Des.
,
238
(
6
), pp.
1265
1274
.10.1016/j.nucengdes.2007.11.009
17.
Kumar
,
R.
,
Jadhav
,
P. A.
,
Gupta
,
S. K.
, and
Gaikwad
,
A. J.
,
2014
, “
Evaluation of Thermal Stratification Induced Stress in Pipe and Its Impact on Fatigue Design
,”
Procedia Eng.
,
86
, pp.
342
349
.10.1016/j.proeng.2014.11.047
18.
Chandra
,
H.
,
2004
, “
Fluid Flow and Heat Transfer Due to Differentially Heated Walls of Horizontal Channel Filled With Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
12
), p.
122601
.10.1115/1.4066437
19.
Gorai
,
S.
,
Samanta
,
D.
, and
Das
,
S. K.
,
2024
, “
Experimental Investigations of Heat Transfer in Simultaneously Developing Transitional Regime of Mixed Convection Flows in a Vertical Tube
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
10
), p.
102601
.10.1115/1.4065609
20.
ANSYS, Inc.
,
2018
,
ANSYS 19.0 Workbench Manual
,
ANSYS
, Canonsburg, PA.
You do not currently have access to this content.