Abstract

This article reflects on the author's research career, which has focused on heat and energy. It details the challenges faced by the author and his research group, highlights their successes and failures, and explores some intriguing unresolved questions in the fields of heat transfer and energy. The author's career has been significantly shaped by his mentors, students, associates, collaborators, and the opportunities to tackle problems at the intersection of heat transfer, materials science, and physics. Additionally, the article discusses the research philosophy imparted by his Ph.D. advisor, Chang-Lin Tien, and the influence of the research culture at the Massachusetts Institute of Technology (MIT). It also offers career advice for students, as well as early- and midcareer researchers.

References

1.
Chen
,
G.
, and
Tien
,
C. L.
,
1992
, “
Partial Coherence Theory of Thin Film Radiative Properties
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
3
), pp.
636
643
.10.1115/1.2911328
2.
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Thermal Conductivities of Quantum Well Structures
,”
J. Thermophys. Heat Transfer
,
7
(
2
), pp.
311
318
.10.2514/3.421
3.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
,
1994
, “
Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
2
), pp.
325
331
.10.1115/1.2911404
4.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
119
(
2
), pp.
220
229
.10.1115/1.2824212
5.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
6.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
7.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
(
19
), pp.
12727
12731
.10.1103/PhysRevB.47.12727
8.
Dresselhaus
,
M. S.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R.
,
Lee
,
H.
,
Wang
,
D.
,
Ren
,
Z.
,
Fleurial
,
J. P.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
(
8
), pp.
1043
1053
.10.1002/adma.200600527
9.
Yang
,
R.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
(
19
), p.
195316
.10.1103/PhysRevB.69.195316
10.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford, UK
.
11.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
, et al.,
2008
, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.10.1126/science.1156446
12.
Mulet
,
J. P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. J.
,
2001
, “
Nanoscale Radiative Heat Transfer Between a Small Particle and a Plane Surface
,”
Appl. Phys. Lett.
,
78
(
19
), pp.
2931
2933
.10.1063/1.1370118
13.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2003
, “
Surface Modes for Near Field Thermophotovoltaics
,”
Appl. Phys. Lett.
,
82
(
20
), pp.
3544
3546
.10.1063/1.1575936
14.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck's Blackbody Radiation Law
,”
Appl. Phys. Lett.
,
92
, p.
133106
.10.1063/1.2905286
15.
Mohideen
,
U.
, and
Roy
,
A.
,
1998
, “
Precision Measurement of the Casimir Force From 0.1 to 0.9 um
,”
Phys. Rev. Lett.
,
81
(
21
), pp.
4549
4552
.10.1103/PhysRevLett.81.4549
16.
Gimzewski
,
J. K.
,
Gerber
,
C.
,
Meyer
,
E.
, and
Schlittler
,
R. R.
,
1994
, “
Observation of a Chemical Reaction Using a Micromechanical Sensor
,”
Chem. Phys. Lett.
,
217
(
5–6
), pp.
589
594
.10.1016/0009-2614(93)E1419-H
17.
Varesi
,
J.
,
Lai
,
J.
,
Perazzo
,
T.
,
Shi
,
Z.
, and
Majumdar
,
A.
,
1997
, “
Photothermal Measurements at Picowatt Resolution Using Uncooled Micro-Optomechanical Sensors
,”
Appl. Phys. Lett.
,
71
(
3
), pp.
306
308
.10.1063/1.120440
18.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
,
2008
, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
,
78
(
11
), p.
115303
.10.1103/PhysRevB.78.115303
19.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.10.1021/nl901208v
20.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H. T.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B
,
84
(
8
), p.
085204
.10.1103/PhysRevB.84.085204
21.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,”
Phys. Rev. B
,
86
(
23
), p.
235304
.10.1103/PhysRevB.86.235304
22.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
23.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
(
4
), pp.
333
349
.10.1080/10407790601144755
24.
Luckyanova
,
M. N.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Jandl
,
A.
,
Bulsara
,
M. T.
,
Schmidt
,
A. J.
,
Minnich
,
A. J.
, et al.,
2012
, “
Coherent Phonon Heat Conduction in Superlattices
,”
Science
,
338
(
6109
), pp.
936
939
.10.1126/science.1225549
25.
Chen
,
G.
,
2021
, “
Non-Fourier Phonon Heat Conduction at the Microscale and Nanoscale
,”
Nat. Rev. Phys.
,
3
(
8
), pp.
555
569
.10.1038/s42254-021-00334-1
26.
Qian
,
X.
,
Zhou
,
J.
, and
Chen
,
G.
,
2021
, “
Phonon-Engineered Extreme Thermal Conductivity Materials
,”
Nat. Mater.
,
20
(
9
), pp.
1188
1202
.10.1038/s41563-021-00918-3
27.
Luckyanova
,
M. N.
,
Mendoza
,
J.
,
Lu
,
H.
,
Song
,
B.
,
Huang
,
S.
,
Zhou
,
J.
,
Li
,
M.
, et al.,
2018
, “
Phonon Localization in Heat Conduction
,”
Sci. Adv.
,
4
(
12
), p.
eeat9460
.10.1126/sciadv.aat9460
28.
Volz
,
S. G.
, and
Chen
,
G.
,
2000
, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
,
61
(
4
), pp.
2651
2656
.10.1103/PhysRevB.61.2651
29.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
(
9
), p.
094303
.10.1103/PhysRevB.69.094303
30.
Dames
,
C.
, and
Chen
,
G.
,
2005
, “
Thermal Conductivity of Nanostructured Thermoelectric Materials
,”
Thermoelectrics Handbook: Macro to Nano
,
D. M.
Rowe
, ed.,
CRC Press
,
Boca Raton
, pp.
1
16
.
31.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.10.1166/jctn.2008.2454
32.
Fermi
,
E.
,
Pasta
,
J.
, and
Ulam
,
S.
,
1955
,
Studies of the Nonlinear Problems
, Vol.
I
,
University of Chicago Press
,
Chigao, IL
.
33.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.10.1103/PhysRevLett.101.235502
34.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
35.
Xu
,
Y.
,
Kraemer
,
D.
,
Song
,
B.
,
Jiang
,
Z.
,
Zhou
,
J.
,
Loomis
,
J.
,
Wang
,
J.
, et al.,
2019
, “
Nanostructured Polymer Films With Metal-Like Thermal Conductivity
,”
Nat. Commun.
,
10
(
1
), p.
101771
.10.1038/s41467-019-09697-7
36.
Tian
,
Z.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Shiga
,
T.
,
Shiomi
,
J.
, and
Chen
,
G.
,
2012
, “
Phonon Conduction in PbSe, PbTe, and PbTe 1-XSe x From First-Principles Calculations
,”
Phys. Rev. B
,
85
(
18
), p.
184303
.10.1103/PhysRevB.85.184303
37.
Lee
,
S.
,
Esfarjani
,
K.
,
Luo
,
T.
,
Zhou
,
J.
,
Tian
,
Z.
, and
Chen
,
G.
,
2014
, “
Resonant Bonding Leads to Low Lattice Thermal Conductivity
,”
Nat. Commun.
,
5
(
1
), p.
3525
.10.1038/ncomms4525
38.
Lee
,
S.
,
Broido
,
D.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Hydrodynamic Phonon Transport in Suspended Graphene
,”
Nat. Commun.
,
6
(
1
), p.
6290
.10.1038/ncomms7290
39.
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Rogers
,
J. A.
,
1998
, “
Optical Heterodyne Detection of Laser-Induced Gratings
,”
Opt. Lett.
,
23
(
16
), p.
1319
.10.1364/OL.23.001319
40.
Chiloyan
,
V.
,
Huberman
,
S.
,
Ding
,
Z.
,
Mendoza
,
J.
,
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2021
, “
Green's Functions of the Boltzmann Transport Equation With the Full Scattering Matrix for Phonon Nanoscale Transport Beyond the Relaxation-Time Approximation
,”
Phys. Rev. B
,
104
(
24
), p.
245424
.10.1103/PhysRevB.104.245424
41.
Huberman
,
S.
,
Duncan
,
R. A.
,
Chen
,
K.
,
Song
,
B.
,
Chiloyan
,
V.
,
Ding
,
Z.
,
Maznev
,
A. A.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2019
, “
Observation of Second Sound in Graphite at Temperatures Above 100 K
,”
Science
,
364
(
6438
), pp.
375
379
.10.1126/science.aav3548
42.
Zhou
,
J.
,
Liao
,
B.
,
Qiu
,
B.
,
Huberman
,
S.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Ab Initio Optimization of Phonon Drag Effect for Low Temperature Thermoelectric Energy Conversion
,”
Proc. Natl. Acad. Sci. U S A
,
112
(
48
), pp.
14777
14782
.10.1073/pnas.1512328112
43.
Xu
,
Q.
,
Zhou
,
J.
,
Liu
,
T. H.
, and
Chen
,
G.
,
2021
, “
First-Principles Study of All Thermoelectric Properties of Si - Ge Alloys Showing Large Phonon Drag From 150 to 1100 K
,”
Phys. Rev. Appl.
,
16
(
6
), p.
064052
.10.1103/PhysRevApplied.16.064052
44.
Liao
,
B.
,
Qiu
,
B.
,
Zhou
,
J.
,
Huberman
,
S.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon With High Carrier Concentrations: A First-Principles Study
,”
Phys Rev Lett
,
114
(
11
), p.
115901
.10.1103/PhysRevLett.114.115901
45.
Zhou
,
J.
,
Zhu
,
H.
,
Song
,
Q.
,
Ding
,
Z.
,
Mao
,
J.
,
Ren
,
Z.
, and
Chen
,
G.
,
2022
, “
Mobility Enhancement in Heavily Doped Semiconductors Via Electron Cloaking
,”
Nat. Commun.
,
13
(
1
), p.
2482
.10.1038/s41467-022-29958-2
46.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
2013
, “
First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
,”
Phys. Rev. Lett.
,
111
(
2
), p.
025901
.10.1103/PhysRevLett.111.025901
47.
Ma
,
H.
,
Li
,
C.
,
Tang
,
S.
,
Yan
,
J.
,
Alatas
,
A.
,
Lindsay
,
L.
,
Sales
,
B. C.
, and
Tian
,
Z.
,
2016
, “
Boron Arsenide Phonon Dispersion From Inelastic X-Ray Scattering: Potential for Ultrahigh Thermal Conductivity
,”
Phys. Rev. B
,
94
(
22
), p.
220303
.10.1103/PhysRevB.94.220303
48.
Tian
,
F.
,
Song
,
B.
,
Chen
,
X.
,
Ravichandran
,
N. K.
,
Lv
,
Y.
,
Chen
,
K.
,
Sullivan
,
S.
, et al.,
2018
, “
Unusual High Thermal Conductivity in Cubic Boron Arsenide Crystals
,”
Science
,
361
(
6402
), pp.
582
585
.10.1126/science.aat7932
49.
Kang
,
J. S.
,
Li
,
M.
,
Wu
,
H.
,
Nguyen
,
H.
, and
Hu
,
Y.
,
2018
, “
Experimental Observation of High Thermal Conductivity in Boron Arsenide
,”
Science
,
361
(
6402
), pp.
575
578
.10.1126/science.aat5522
50.
Li
,
S.
,
Zheng
,
Q.
,
Lv
,
Y.
,
Liu
,
X.
,
Wang
,
X.
,
Huang
,
P. Y.
,
Cahill
,
D. G.
, and
Lv
,
B.
,
2018
, “
High Thermal Conductivity in Cubic Boron Arsenide Crystals
,”
Science
,
361
(
6402
), pp.
579
581
.10.1126/science.aat8982
51.
Feng
,
T.
,
Lindsay
,
L.
, and
Ruan
,
X.
,
2017
, “
Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids
,”
Phys. Rev. B
,
96
(
16
), p.
161201R
.10.1103/PhysRevB.96.161201
52.
Liu
,
T. H.
,
Song
,
B.
,
Meroueh
,
L.
,
Ding
,
Z.
,
Song
,
Q.
,
Zhou
,
J.
,
Li
,
M.
, and
Chen
,
G.
,
2018
, “
Simultaneously High Electron and Hole Mobilities in Cubic Boron-V Compounds: BP, BAs, and BSb
,”
Phys. Rev. B
,
98
(
8
), p.
081203
.10.1103/PhysRevB.98.081203
53.
Shin
,
J.
,
Amila Gamage
,
G.
,
Ding
,
Z.
,
Chen
,
K.
,
Tian
,
F.
,
Qian
,
X.
,
Zhou
,
J.
, et al.,
2022
, “
High Ambipolar Mobility in Cubic Boron Arsenide
,”
Science
,
377
(
6604
), pp.
437
440
.10.1126/science.abn4290
54.
Borca-Tasciuc
,
T.
,
Kumar
,
A. R.
, and
Chen
,
G.
,
2001
, “
Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
,
72
(
4
), pp.
2139
2147
.10.1063/1.1353189
55.
Dames
,
C.
, and
Chen
,
G.
,
2005
, “
1ω, 2ω, and 3ω Methods for Measurements of Thermal Properties
,”
Rev. Sci. Instrum.
,
76
(
12
), p.
124902
.10.1063/1.2130718
56.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
.10.1063/1.3006335
57.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
58.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nat. Mater.
,
9
(
1
), pp.
26
30
.10.1038/nmat2568
59.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
60.
Hu
,
Y.
,
Zeng
,
L.
,
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport
,”
Nat. Nanotechnol.
,
10
(
8
), pp.
701
706
.10.1038/nnano.2015.109
61.
Bencivenga
,
F.
,
Mincigrucci
,
R.
,
Capotondi
,
F.
,
Foglia
,
L.
,
Naumenko
,
D.
,
Maznev
,
A. A.
,
Pedersoli
,
E.
, et al.,
2019
, “
Nanoscale Transient Gratings Excited and Probed by Extreme Ultraviolet Femtosecond Pulses
,”
Sci. Adv.
,
5
(
7
), p.
eeaw5805
.10.1126/sciadv.aaw5805
62.
Chiloyan
,
V.
,
Garg
,
J.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Transition From Near-Field Thermal Radiation to Phonon Heat Conduction at Sub-Nanometre Gaps
,”
Nat. Commun.
,
6
(
1
), p.
6755
.10.1038/ncomms7755
63.
Chen
,
D. Z. A.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2005
, “
Surface Phonon-Polariton Mediated Thermal Conductivity Enhancement of Amorphous Thin Films
,”
Phys. Rev. B
,
72
(
15
), p.
155435
.10.1103/PhysRevB.72.155435
64.
Wu
,
Y.
,
Ordonez-Miranda
,
J.
,
Gluchko
,
S.
,
Anufriev
,
R.
,
Sousa Meneses
,
D.
,
Campo
,
D.
,
Del
,
L.
,
Volz
,
S.
, and
Nomura
,
M.
,
2020
, “
Enhanced Thermal Conduction by Surface Phonon-Polaritons
,”
Sci. Adv.
,
6
(
40
), p.
eabb4461
.10.1126/sciadv.abb4461
65.
Pei
,
Y.
,
Chen
,
L.
,
Jeon
,
W.
,
Liu
,
Z.
, and
Chen
,
R.
,
2023
, “
Low-Dimensional Heat Conduction in Surface Phonon Polariton Waveguide
,”
Nat. Commun.
,
14
(
1
), p.
8242
.10.1038/s41467-023-43736-8
66.
Pan
,
Z.
,
Lu
,
G.
,
Li
,
X.
,
McBride
,
J. R.
,
Juneja
,
R.
,
Long
,
M.
,
Lindsay
,
L.
,
Caldwell
,
J. D.
, and
Li
,
D.
,
2023
, “
Remarkable Heat Conduction Mediated by Non-Equilibrium Phonon Polaritons
,”
Nature
,
623
(
7986
), pp.
307
312
.10.1038/s41586-023-06598-0
67.
Kraemer
,
D.
,
Jie
,
Q.
,
Mcenaney
,
K.
,
Cao
,
F.
,
Liu
,
W.
,
Weinstein
,
L. A.
,
Loomis
,
J.
,
Ren
,
Z.
, and
Chen
,
G.
,
2016
, “
Concentrating Solar Thermoelectric Generators With a Peak Efficiency of 7.4%
,”
Nat. Energy
,
1
(
11
), p.
16153
.10.1038/nenergy.2016.153
68.
Lu
,
H.
, and
Gang
,
C.
,
2007
, “
Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications
,”
Nano Lett.
,
7
(
11
), pp.
3249
3252
.10.1021/nl071018b
69.
Branham
,
M. S.
,
Hsu
,
W. C.
,
Yerci
,
S.
,
Loomis
,
J.
,
Boriskina
,
S. V.
,
Hoard
,
B. R.
,
Han
,
S. E.
, and
Chen
,
G.
,
2015
, “
15.7% Efficient 10-Μm-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures
,”
Adv. Mater.
,
27
(
13
), pp.
2182
2188
.10.1002/adma.201405511
70.
Wang
,
J.
,
Feng
,
S. P.
,
Yang
,
Y.
,
Hau
,
N. Y.
,
Munro
,
M.
,
Ferreira-Yang
,
E.
, and
Chen
,
G.
,
2015
, “
Thermal Charging Phenomenon in Electrical Double Layer Capacitors
,”
Nano Lett.
,
15
(
9
), pp.
5784
5790
.10.1021/acs.nanolett.5b01761
71.
Lee
,
S. W.
,
Yang
,
Y.
,
Lee
,
H. W.
,
Ghasemi
,
H.
,
Kraemer
,
D.
,
Chen
,
G.
, and
Cui
,
Y.
,
2014
, “
An Electrochemical System for Efficiently Harvesting Low-Grade Heat Energy
,”
Nat. Commun.
,
5
(
1
), p.
3942
.10.1038/ncomms4942
72.
Tong
,
J. K.
,
Huang
,
X.
,
Boriskina
,
S. V.
,
Loomis
,
J.
,
Xu
,
Y.
, and
Chen
,
G.
,
2015
, “
Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management
,”
ACS Photonics
,
2
(
6
), pp.
769
778
.10.1021/acsphotonics.5b00140
73.
Bajpayee
,
A.
,
Luo
,
T.
,
Muto
,
A.
, and
Chen
,
G.
,
2011
, “
Very Low Temperature Membrane-Free Desalination by Directional Solvent Extraction
,”
Energy Environ. Sci.
,
4
(
5
), pp.
1672
1675
.10.1039/c1ee01027a
74.
Ghasemi
,
H.
,
Ni
,
G.
,
Marconnet
,
A. M.
,
Loomis
,
J.
,
Yerci
,
S.
,
Miljkovic
,
N.
, and
Chen
,
G.
,
2014
, “
Solar Steam Generation by Heat Localization
,”
Nat. Commun.
,
5
(
1
), p.
4449
.10.1038/ncomms5449
75.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.10.1063/1.3429737
76.
Neumann
,
O.
,
Urban
,
A. S.
,
Day
,
J.
,
Lal
,
S.
,
Nordlander
,
P.
, and
Halas
,
N. J.
,
2013
, “
Solar Vapor Generation Enabled by Nanoparticles
,”
ACS Nano
,
7
(
1
), pp.
42
49
.10.1021/nn304948h
77.
Zhao
,
F.
,
Zhou
,
X.
,
Shi
,
Y.
,
Qian
,
X.
,
Alexander
,
M.
,
Zhao
,
X.
,
Mendez
,
S.
,
Yang
,
R.
,
Qu
,
L.
, and
Yu
,
G.
,
2018
, “
Highly Efficient Solar Vapour Generation Via Hierarchically Nanostructured Gels
,”
Nat. Nanotechnol.
,
13
(
6
), pp.
489
495
.10.1038/s41565-018-0097-z
78.
Chen
,
G.
,
2022
, “
Perspectives on Molecular-Level Understanding of Thermophysics of Liquids and Future Research Directions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
1
), p.
010801
.10.1115/1.4052657
79.
Tu
,
Y.
,
Zhou
,
J.
,
Lin
,
S.
,
Alshrah
,
M.
,
Zhao
,
X.
, and
Chen
,
G.
,
2023
, “
Plausible Photomolecular Effect Leading to Water Evaporation Exceeding the Thermal Limit
,”
Proc. Natl. Acad. Sci. U S A
,
120
(
45
), p.
e2312751120
.10.1073/pnas.2312751120
80.
Lv
,
G.
,
Tu
,
Y.
,
Zhang
,
J. H.
, and
Chen
,
G.
,
2024
, “
Photomolecular Effect: Visible Light Interaction With Air–Water Interface
,”
Proc. Natl. Acad. Sci. U S A
,
121
(
18
), p.
e2320844121
.10.1073/pnas.2320844121
81.
Verma
,
G.
,
Kumar
,
V.
,
Kumar
,
A.
, and
Li
,
W.
,
2024
, “
Unveiling Photon-Driven Nonlinear Evaporation Via Liquid Drop Interferometry
,”
Opt. Lett.
,
49
(
15
), p.
4074
.10.1364/OL.527346
82.
Chen
,
G.
,
2024
, “
Modeling Photomolecular Effect Using Generalized Boundary Conditions for Maxwell Equations
,”
Commun. Phys.
,
7
(
1
), p.
330
.10.1038/s42005-024-01826-z
83.
Fang
,
G.
, and
Ward
,
C. A.
,
1999
, “
Temperature Measured Close to the Interface of an Evaporating Liquid
,”
Phys. Rev. E
,
59
(
1
), pp.
417
428
.10.1103/PhysRevE.59.417
84.
Schrage
,
R.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
,
New York
.
85.
Chen
,
G.
,
2024
, “
Interfacial Cooling and Heating, Temperature Discontinuity and Inversion in Evaporation and Condensation
,”
Int. J. Heat Mass Transfer
,
218
, p.
124762
.10.1016/j.ijheatmasstransfer.2023.124762
86.
Pao
,
Y. P.
,
1971
, “
Temperature and Density Jumps in the Kinetic Theory of Gases and Vapors
,”
Phys. Fluids
,
14
(
7
), pp.
1340
1346
.10.1063/1.1693612
87.
Chen
,
G.
,
2023
, “
On Paradoxical Phenomena During Evaporation and Condensation Between Two Parallel Plates
,”
J. Chem. Phys.
,
159
(
15
), p.
151101
.10.1063/5.0171205
88.
Chen
,
G.
,
2022
, “
Donnan Equilibrium Revisited: Coupling Between Ion Concentrations, Osmotic Pressure, and Donnan Potential
,”
J. Micromech. Mol. Phys.
,
07
(
2
), pp.
127
134
.10.1142/S2424913021420145
89.
Chen
,
G.
,
2022
, “
Thermodynamics of Hydrogels for Applications in Atmospheric Water Harvesting, Evaporation, and Desalination
,”
Phys. Chem. Chem. Phys.
,
24
(
20
), pp.
12329
12345
.10.1039/D2CP00356B
90.
Tu
,
Y.
, and
Chen
,
G.
,
2024
, “
Rethinking Loss of Available Work and Gouy-Stodola Theorem
,”
ASME J. Heat Mass Transfer-Trans. ASME
, accepted.10.1115/1.4066860
You do not currently have access to this content.