Abstract

The rapid development of various micro-electromechanical systems (MEMS) over the past few decades has served as a cornerstone for precisely probing thermal transport in a rich variety of nanomaterials and nanostructures, all the way down to single-walled carbon nanotubes and monolayer graphene. However, numerous materials that are macroscopic (millimeter scale and above) at least in one dimension, such as metal wires, carbon fibers, and polymer fibers/films, have remained largely inaccessible by MEMS-based experimental approaches. In light of the great fundamental and technological value of these materials, we propose the concept of “big-MEMS” here as an effort to fill this notable gap. The idea is to create macroscopic measurement devices through standard MEMS design and fabrication techniques. For demonstration, we present a novel process that enables silicon-based suspended heater/calorimeter devices of millimeter to centimeter dimensions to be fabricated reliably, reconfigurably, and at low cost. In particular, the beam thermal conductance of our big-MEMS devices can be tuned from around 1.1 to 0.2 mW/K. Combined with a temperature resolution down to about 20 μK, these devices are suitable for characterizing materials spanning a broad range of thermal conductivity. As an example, the thermal conductivity of platinum wires with a diameter of 20 μm and lengths up to 3.5 mm are measured. Moreover, intriguing transport phenomena such as divergent thermal conductivity in low-dimensional materials and heat flow mediated by surface polaritons can be explored considering their inherent need for multiscale analysis. In principle, our concept of big-MEMS can also be applied to the study of thermal diffusivity, heat capacity, charge transport, and beyond.

References

1.
Cui
,
Y.
, and
Lieber
,
C. M.
,
2001
, “
Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks
,”
Science
,
291
(
5505
), pp.
851
853
.10.1126/science.291.5505.851
2.
Iijima
,
S.
, and
Ichihashi
,
T.
,
1993
, “
Single-Shell Carbon Nanotubes of 1-nm Diameter
,”
Nature
,
363
(
6430
), pp.
603
605
.10.1038/363603a0
3.
Esaki
,
L.
, and
Tsu
,
R.
,
1970
, “
Superlattice and Negative Differential Conductivity in Semiconductors
,”
IBM J. Res. Dev.
,
14
(
1
), pp.
61
65
.10.1147/rd.141.0061
4.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.10.1126/science.1102896
5.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
6.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
, et al.,
2014
, “
Nanoscale Thermal Transport. II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
7.
Chen
,
G.
,
2021
, “
Non-Fourier Phonon Heat Conduction at the Microscale and Nanoscale
,”
Nat. Rev. Phys.
,
3
(
8
), pp.
555
569
.10.1038/s42254-021-00334-1
8.
Qian
,
X.
,
Zhou
,
J.
, and
Chen
,
G.
,
2021
, “
Phonon-Engineered Extreme Thermal Conductivity Materials
,”
Nat. Mater.
,
20
(
9
), pp.
1188
1202
.10.1038/s41563-021-00918-3
9.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum
,.,
61
(
2
), pp.
802
808
.10.1063/1.1141498
10.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conductivity of Thin Films: 3 Omega And Related Electrothermal Methods
,”
Annu. Rev. Heat Transf.
,
16
(
1
), pp.
7
49
.10.1615/AnnualRevHeatTransfer.v16.20
11.
Cui
,
L.
,
Hur
,
S.
,
Akbar
,
Z. A.
,
Klöckner
,
J. C.
,
Jeong
,
W.
,
Pauly
,
F.
,
Jang
,
S.-Y.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2019
, “
Thermal Conductance of Single-Molecule Junctions
,”
Nature
,
572
(
7771
), pp.
628
633
.10.1038/s41586-019-1420-z
12.
Reihani
,
A.
,
Luan
,
Y.
,
Yan
,
S.
,
Lim
,
J. W.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2022
, “
Quantitative Mapping of Unmodulated Temperature Fields With Nanometer Resolution
,”
ACS Nano
,
16
(
1
), pp.
939
950
.10.1021/acsnano.1c08513
13.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.10.1103/PhysRevLett.87.215502
14.
Shin
,
S.
, and
Chen
,
R.
,
2020
, “
Thermal Transport Measurements of Nanostructures Using Suspended Micro-Devices
,”
Nanoscale Energy Transport
,
B.
Liao
, ed.,
IOP Publishing
,
Bristol, UK
, pp.
12
1
12-33
.
15.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
16.
Guo
,
H.
,
Yan
,
W.
,
Sun
,
J.
,
Pan
,
Y.
,
He
,
H.
,
Zhang
,
Y.
,
Yang
,
F.
, et al.,
2024
, “
Four-Phonon Scattering and Thermal Transport in 2H–MoTe2
,”
Mater. Today Phys.
,
40
, p.
101314
.10.1016/j.mtphys.2023.101314
17.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
18.
Tian
,
F.
,
Song
,
B.
,
Chen
,
X.
,
Ravichandran
,
N. K.
,
Lv
,
Y.
,
Chen
,
K.
,
Sullivan
,
S.
, et al.,
2018
, “
Unusual High Thermal Conductivity in Boron Arsenide Bulk Crystals
,”
Science
,
361
(
6402
), pp.
582
585
.10.1126/science.aat7932
19.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2009
, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
094901
.10.1063/1.3212673
20.
Chen
,
K.
,
Song
,
B.
,
Ravichandran
,
N. K.
,
Zheng
,
Q.
,
Chen
,
X.
,
Lee
,
H.
,
Sun
,
H.
, et al.,
2020
, “
Ultrahigh Thermal Conductivity in Isotope-Enriched Cubic Boron Nitride
,”
Science
,
367
(
6477
), pp.
555
559
.10.1126/science.aaz6149
21.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
22.
Huberman
,
S.
,
Duncan
,
R. A.
,
Chen
,
K.
,
Song
,
B.
,
Chiloyan
,
V.
,
Ding
,
Z.
,
Maznev
,
A. A.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2019
, “
Observation of Second Sound in Graphite at Temperatures Above 100 K
,”
Science
,
364
(
6438
), pp.
375
379
.10.1126/science.aav3548
23.
Yu
,
C.
,
Shi
,
L.
,
Yao
,
Z.
,
Li
,
D.
, and
Majumdar
,
A.
,
2005
, “
Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube
,”
Nano Lett.
,
5
(
9
), pp.
1842
1846
.10.1021/nl051044e
24.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2010
, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.10.1126/science.1184014
25.
Xu
,
X.
,
Pereira
,
L. F. C.
,
Wang
,
Y.
,
Wu
,
J.
,
Zhang
,
K.
,
Zhao
,
X.
,
Bae
,
S.
, et al.,
2014
, “
Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene
,”
Nat. Commun.
,
5
(
1
), p.
3689
.10.1038/ncomms4689
26.
Wang
,
Y.
,
Zhang
,
X.
,
Yan
,
W.
,
Liang
,
N.
,
He
,
H.
,
Tao
,
X.
,
Li
,
A.
, et al.,
2024
, “
Thermal Transport in a 2D Amorphous Material
,” arXiv:2402.13471.
27.
Chang
,
C. W.
,
Okawa
,
D.
,
Majumdar
,
A.
, and
Zettl
,
A.
,
2006
, “
Solid-State Thermal Rectifier
,”
Science
,
314
(
5802
), pp.
1121
1124
.10.1126/science.1132898
28.
Zhang
,
Y.
,
Lv
,
Q.
,
Wang
,
H.
,
Zhao
,
S.
,
Xiong
,
Q.
,
Lv
,
R.
, and
Zhang
,
X.
,
2022
, “
Simultaneous Electrical and Thermal Rectification in a Monolayer Lateral Heterojunction
,”
Science
,
378
(
6616
), pp.
169
175
.10.1126/science.abq0883
29.
Mingo
,
N.
, and
Broido
,
D.
,
2005
, “
Length Dependence of Carbon Nanotube Thermal Conductivity and the ‘Problem of Long Waves
,”
Nano Lett.
,
5
(
7
), pp.
1221
1225
.10.1021/nl050714d
30.
Yang
,
L.
,
Tao
,
Y.
,
Zhu
,
Y.
,
Akter
,
M.
,
Wang
,
K.
,
Pan
,
Z.
,
Zhao
,
Y.
, et al.,
2021
, “
Observation of Superdiffusive Phonon Transport in Aligned Atomic Chains
,”
Nat. Nanotechnol.
,
16
(
7
), pp.
764
768
.10.1038/s41565-021-00884-6
31.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
,
2008
, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature
,
451
(
7175
), pp.
163
167
.10.1038/nature06381
32.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.10.1021/nl901208v
33.
Song
,
B.
,
Ganjeh
,
Y.
,
Sadat
,
S.
,
Thompson
,
D.
,
Fiorino
,
A.
,
Fernández-Hurtado
,
V.
,
Feist
,
J.
, et al.,
2015
, “
Enhancement of Near-Field Radiative Heat Transfer Using Polar Dielectric Thin Films
,”
Nat. Nanotechnol.
,
10
(
3
), pp.
253
258
.10.1038/nnano.2015.6
34.
Kim
,
K.
,
Song
,
B.
,
Fernández-Hurtado
,
V.
,
Lee
,
W.
,
Jeong
,
W.
,
Cui
,
L.
,
Thompson
,
D.
, et al.,
2015
, “
Radiative Heat Transfer in the Extreme Near Field
,”
Nature
,
528
(
7582
), pp.
387
391
.10.1038/nature16070
35.
Song
,
B.
,
Thompson
,
D.
,
Fiorino
,
A.
,
Ganjeh
,
Y.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2016
, “
Radiative Heat Conductances Between Dielectric and Metallic Parallel Plates With Nanoscale Gaps
,”
Nat. Nanotechnol.
,
11
(
6
), pp.
509
514
.10.1038/nnano.2016.17
36.
Thompson
,
D.
,
Zhu
,
L.
,
Mittapally
,
R.
,
Sadat
,
S.
,
Xing
,
Z.
,
McArdle
,
P.
,
Qazilbash
,
M. M.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2018
, “
Hundred-Fold Enhancement in Far-Field Radiative Heat Transfer Over the Blackbody Limit
,”
Nature
,
561
(
7722
), pp.
216
221
.10.1038/s41586-018-0480-9
37.
Tang
,
L.
,
Corrêa
,
L. M.
,
Francoeur
,
M.
, and
Dames
,
C.
,
2024
, “
Corner- and Edge-Mode Enhancement of Near-Field Radiative Heat Transfer
,”
Nat.
,
629
(
8010
), pp.
67
73
.10.1038/s41586-024-07279-2
38.
Pan
,
Z.
,
Lu
,
G.
,
Li
,
X.
,
McBride
,
J. R.
,
Juneja
,
R.
,
Long
,
M.
,
Lindsay
,
L.
,
Caldwell
,
J. D.
, and
Li
,
D.
,
2023
, “
Remarkable Heat Conduction Mediated by Non-Equilibrium Phonon Polaritons
,”
Nature
,
623
(
7986
), pp.
307
312
.10.1038/s41586-023-06598-0
39.
Yang
,
L.
,
Yue
,
S.
,
Tao
,
Y.
,
Qiao
,
S.
,
Li
,
H.
,
Dai
,
Z.
,
Song
,
B.
, et al.,
2024
, “
Suppressed Thermal Transport in Silicon Nanoribbons by Inhomogeneous Strain
,”
Nature
,
629
(
8014
), pp.
1021
1026
.10.1038/s41586-024-07390-4
40.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.10.1063/1.1728417
41.
Xu
,
Y.
,
Kraemer
,
D.
,
Song
,
B.
,
Jiang
,
Z.
,
Zhou
,
J.
,
Loomis
,
J.
,
Wang
,
J.
, et al.,
2019
, “
Nanostructured Polymer Films With Metal-Like Thermal Conductivity
,”
Nat. Commun.
,
10
(
1
), p.
1771
.10.1038/s41467-019-09697-7
42.
Guo
,
J.
,
Wang
,
X.
, and
Wang
,
T.
,
2007
, “
Thermal Characterization of Microscale Conductive and Nonconductive Wires Using Transient Electrothermal Technique
,”
J. Appl. Phys.
,
101
(
6
), p.
063537
.10.1063/1.2714679
43.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D. L.
,
2001
, “
3ω Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
,
72
(
7
), pp.
2996
3003
.10.1063/1.1378340
44.
Zhang
,
X.
,
Fujiwara
,
S.
, and
Fujii
,
M.
,
2000
, “
Measurements of Thermal Conductivity and Electrical Conductivity of a Single Carbon Fiber
,”
Int. J. Thermophys.
,
21
(
4
), pp.
965
980
.10.1023/A:1006674510648
45.
Hou
,
J.
,
Wang
,
X.
,
Liu
,
C.
, and
Cheng
,
H.
,
2006
, “
Development of Photothermal-Resistance Technique and Its Application to Thermal Diffusivity Measurement of Single-Wall Carbon Nanotube Bundles
,”
Appl. Phys. Lett.
,
88
(
18
), p.
181910
.10.1063/1.2199614
46.
Kim
,
J.
,
Evans
,
D. A.
,
Sellan
,
D. P.
,
Williams
,
O. M.
,
Ou
,
E.
,
Cowley
,
A. H.
, and
Shi
,
L.
,
2016
, “
Thermal and Thermoelectric Transport Measurements of an Individual Boron Arsenide Microstructure
,”
Appl. Phys. Lett.
,
108
(
20
), p.
201905
.10.1063/1.4950970
47.
Jeon
,
W.
,
Pei
,
Y.
, and
Chen
,
R.
,
2023
, “
Thermal Conductivity and Role of Phonon Scatterings in Suspended Thin Graphite Nanoribbons
,” arXiv:2306.10704.
48.
Nguyen
,
A. T.
,
Jones
,
C.
, and
Lee
,
W.
,
2020
, “
Development of a Rigid Suspended Micro-Island Device and Robust Measurement Method for Thermal Transport Measurements
,”
Rev. Sci. Instrum.
,
91
(
12
), p.
124902
.10.1063/5.0026057
49.
Smiljanić
,
M.
,
Lazić
,
Ž.
,
Radjenović
,
B.
,
Radmilović-Radjenović
,
M.
, and
Jović
,
V.
,
2019
, “
Evolution of Si Crystallographic Planes-Etching of Square and Circle Patterns in 25 wt. % TMAH
,”
Micromachines
,
10
(
2
), p.
102
.10.3390/mi10020102
50.
Ghodssi
,
R.
, and
Lin
,
P.
,
2011
,
MEMS Materials and Processes Handbook
,
Springer Science & Business Media
,
Berlin, Germany
.
51.
Salvadori
,
M. C.
,
Brown
,
I. G.
,
Vaz
,
A. R.
,
Melo
,
L. L.
, and
Cattani
,
M.
,
2003
, “
Measurement of the Elastic Modulus of Nanostructured Gold and Platinum Thin Films
,”
Phys. Rev. B
,
67
(
15
), p.
153404
.10.1103/PhysRevB.67.153404
52.
Khan
,
A.
,
Philip
,
J.
, and
Hess
,
P.
,
2004
, “
Young's Modulus of Silicon Nitride Used in Scanning Force Microscope Cantilevers
,”
J. Appl. Phys.
,
95
(
4
), pp.
1667
1672
.10.1063/1.1638886
53.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What Is the Young's Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.10.1109/JMEMS.2009.2039697
54.
Zhang
,
X.
,
Xie
,
H.
,
Fujii
,
M.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
,
2005
, “
Thermal and Electrical Conductivity of a Suspended Platinum Nanofilm
,”
Appl. Phys. Lett.
,
86
(
17
), p.
171912
.10.1063/1.1921350
55.
Mastrangelo
,
C. H.
,
Tai
,
Y.-C.
, and
Muller
,
R. S.
,
1990
, “
Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films
,”
Sens. Actuators, A
,
23
(
1–3
), pp.
856
860
.10.1016/0924-4247(90)87046-L
56.
Liu
,
C.
,
2012
,
Foundations of MEMS
,
Pearson Education India
,
Chennai, India
.
57.
Sadat
,
S.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2012
, “
High Resolution Resistive Thermometry for Micro/Nanoscale Measurements
,”
Rev. Sci. Instrum.
,
83
(
8
), p.
084902
.10.1063/1.4744963
58.
Haynes
,
W. M.
,
2016
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
59.
Kim
,
J.
,
Ou
,
E.
,
Sellan
,
D. P.
, and
Shi
,
L.
,
2015
, “
A Four-Probe Thermal Transport Measurement Method for Nanostructures
,”
Rev. Sci. Instrum
,.,
86
(
4
), p.
044901
.10.1063/1.4916547
60.
Liu
,
J.
,
Li
,
T.
,
Hu
,
Y.
, and
Zhang
,
X.
,
2017
, “
Benchmark Study of the Length Dependent Thermal Conductivity of Individual Suspended, Pristine SWCNTs
,”
Nanoscale
,
9
(
4
), pp.
1496
1501
.10.1039/C6NR06901K
61.
Chen
,
D.-Z. A.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2005
, “
Surface Phonon-Polariton Mediated Thermal Conductivity Enhancement of Amorphous Thin Films
,”
Phys. Rev. B
,
72
(
15
), p.
155435
.10.1103/PhysRevB.72.155435
62.
Lee
,
S.
,
Broido
,
D.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Hydrodynamic Phonon Transport in Suspended Graphene
,”
Nat. Commun.
,
6
(
1
), p.
6290
.10.1038/ncomms7290
63.
Ding
,
Z.
,
Chen
,
K.
,
Song
,
B.
,
Shin
,
J.
,
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2022
, “
Observation of Second Sound in Graphite Over 200 K
,”
Nat. Commun.
,
13
(
1
), p.
285
.10.1038/s41467-021-27907-z
64.
Luckyanova
,
M. N.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Jandl
,
A.
,
Bulsara
,
M. T.
,
Schmidt
,
A. J.
,
Minnich
,
A. J.
, et al.,
2012
, “
Coherent Phonon Heat Conduction in Superlattices
,”
Science
,
338
(
6109
), pp.
936
939
.10.1126/science.1225549
65.
Luo
,
X.
,
Salihoglu
,
H.
,
Wang
,
Z.
,
Li
,
Z.
,
Kim
,
H.
,
Liu
,
X.
,
Li
,
J.
,
Yu
,
B.
,
Du
,
S.
, and
Shen
,
S.
,
2024
, “
Observation of Near-Field Thermal Radiation Between Coplanar Nanodevices With Subwavelength Dimensions
,”
Nano Lett.
,
24
(
5
), pp.
1502
1509
.10.1021/acs.nanolett.3c03748
You do not currently have access to this content.