Abstract

Chalcogenide materials based on germanium–antimony–tellurium (GST) are typically used in phase change memory (PCM) applications. The thermal conductivity of GST films is an important factor in predicting the temperature evolution and the structural alterations of the material in response to rapid thermal transitions inherent in memory operations. While several techniques have been used to determine the thin film thermal conductivity of GSTs, they require fabricating electrical connections for metal heaters or thermometers on test samples. In this paper, we report using a noncontact scanning thermal microscopy (SThM) technique to measure the thermal conductivity of GST thin films while circumventing the need for sample preparation. A Wollaston wire probe of a 5-μm diameter was used as a Joule-heated thermometer to measure the probe thermal resistance in air far away and at 100 nm away from the sample surface. Detailed heat transfer modeling between the probe, sample, and ambient, which considers the nonclassical heat transfer across the gap between the SThM probe and sample surface, was used to determine the thermal resistance of several GST films sputtered with different powers on glass and silicon substrates. The thermal conductivity of GST thin film shows a reducing trend from 0.7 to 0.2 W m−1 K−1 when the thickness reduces from 159 nm to 24 nm. The reasons for thermal conductivity reduction are elucidated based on analytical thermal conductivity modeling.

References

1.
Tallis
,
B.
,
2019
, “
Intel Announces Optane Memory M15: 3D XPoint on M.2 PCIe 3.0 x4
,” AnandTech, New York, accessed Feb. 11, 2025, https://www.anandtech.com/show/14437/intel-announces-optane-memory-m15-3d-xpoint-on-m2-pcie-30-x4
2.
Choe
,
J.
,
2021
, “
Intel’s 2nd Generation Xpoint Memory—Will It Be Worth the Long Wait Ahead?
,” TechInsights, Nepean, ON, accessed Feb. 11, 2025, https://www.techinsights.com/blog/memory/intels-2nd-generation-xpoint-memory
3.
Noé
,
P.
,
Vallée
,
C.
,
Hippert
,
F.
,
Fillot
,
F.
, and
Raty
,
J.-Y.
,
2018
, “
Phase-Change Materials for Non-Volatile Memory Devices: From Technological Challenges to Materials Science Issues
,”
Semicond. Sci. Technol.
,
33
(
1
), p.
013002
.10.1088/1361-6641/aa7c25
4.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1994
, “
Solid Layer Thermal-Conductivity Measurement Techniques
,”
ASME Appl. Mech. Rev.
, 47(3), pp.
101
112
.10.1115/1.3111073
5.
Risk
,
W.
,
Rettner
,
C.
, and
Raoux
,
S.
,
2008
, “
In Situ 3ω Techniques for Measuring Thermal Conductivity of Phase-Change Materials
,”
Rev. Sci. Instrum.
,
79
(
2
), p.
026108
.10.1063/1.2841802
6.
Zhang
,
Y.
,
Castillo
,
E. E.
,
Mehta
,
R. J.
,
Ramanath
,
G.
, and
Borca-Tasciuc
,
T.
,
2011
, “
A Noncontact Thermal Microprobe for Local Thermal Conductivity Measurement
,”
Rev. Sci. Instrum.
,
82
(
2
), p.
024902
.10.1063/1.3545823
7.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
, et al.,
2014
, “
Nanoscale Thermal Transport. II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
8.
Bozorg-Grayeli
,
E.
,
Reifenberg
,
J.
,
Chang
,
K.
,
Panzer
,
M.
, and
Goodson
,
K.
,
2010
, “
Thermal Conductivity and Boundary Resistance Measurements of GeSbTe and Electrode Materials Using Nanosecond Thermoreflectance
,” Proceedings of the 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, June 2–5, pp.
1
7
.10.1109/ITHERM.2010.5501263
9.
Fong
,
S.
,
Jeyasingh
,
R.
,
Asheghi
,
M.
,
Goodson
,
K.
, and
Wong
,
H.-S.
,
2014
, “
Characterization of Phase-Change Layer Thermal Properties Using a Micro-Thermal Stage
,” Proceedings of the 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
744
749
.10.1109/ITHERM.2014.6892355
10.
Hase
,
M.
, and
Tominaga
,
J.
,
2011
, “
Thermal Conductivity of GeTe/Sb2Te3 Superlattices Measured by Coherent Phonon Spectroscopy
,”
Appl. Phys. Lett.
,
99
(
3
), p.
031902
.10.1063/1.3611030
11.
Paul, B., Zhang, Y., Zhu, W., Xin, B., Ramanath, G., Borca-Tasciuc, T., and Eklund, P., 2022, “Effect of Disordered Nanoporosity on Electrical and Thermal Properties of Layered Ca3Co4O9 Films,”
Appl. Phys. Lett.
, 120, p.
061904
.10.1063/5.0076996
12.
Zhang
,
Y.
,
Zhu
,
W.
,
Han
,
L.
, and
Borca-Tasciuc
,
T.
,
2020
, “
Quantitative Temperature Distribution Measurements by Non-Contact Scanning Thermal Microscopy Using Wollaston Probes Under Ambient Conditions
,”
Rev. Sci. Instrum.
,
91
(
1
), p.
014901
.10.1063/1.5099981
13.
Zhang
,
Y.
,
Zhu
,
W.
,
Hui
,
F.
,
Lanza
,
M.
,
Borca-Tasciuc
,
T.
, and
Muñoz Rojo
,
M.
,
2019
, “
A Review on Principles and Applications of Scanning Thermal Microscopy (SThM)
,”
Adv. Funct. Mater.
,
30
(
18
), p.
1900892
.10.1002/adfm.201900892
14.
Zhang
,
Y.
,
Zhu
,
W.
, and
Borca-Tasciuc
,
T.
,
2021
, “
Sensitivity and Spatial Resolution for Thermal Conductivity Measurements Using Noncontact Scanning Thermal Microscopy With Thermoresistive Probes Under Ambient Conditions
,”
Oxford Open Mater. Sci.
,
1
(
1
), p.
itab011
.10.1093/oxfmat/itab011
15.
Zhang
,
Y.
,
Zhu
,
W.
, and
Borca-Tasciuc
,
T.
,
2021
, “
Thermal Conductivity Measurements of Thin Films by Non-Contact Scanning Thermal Microscopy Under Ambient Conditions
,”
Nanoscale Adv.
,
3
(
3
), pp.
692
702
.10.1039/D0NA00657B
16.
Calvert
,
M.
, and
Baker
,
J.
,
1998
, “
Thermal Conductivity and Gaseous Microscale Transport
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
138
145
.10.2514/2.6338
17.
Zhu
,
C.-Y.
,
Li
,
Z.-Y.
, and
Tao
,
W.-Q.
,
2017
, “
Theoretical and DSMC Studies on Heat Conduction of Argon Gas in a Cubic Nanopore
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
052405
.10.1115/1.4035854
18.
Zhou
,
W. D.
,
Liu
,
B.
,
Yu
,
S. K.
, and
Hua
,
W.
,
2010
, “
Rarefied-Gas Heat Transfer in Micro- and Nanoscale Couette Flows
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
81
(
Pt. 1
), p.
011204
.10.1103/PhysRevE.81.011204
19.
Fillot
,
F.
,
Sabbione
,
C.
,
Pierre
,
F.
,
Hippert
,
F.
, and
Noé
,
P.
,
2018
, “
Crystallization of Ge2Sb2Te5 and Nitrogen-Doped Ge2Sb2Te5 Phase-Change-Materials Thin Films Studied by In Situ Combined X-Ray Scattering Techniques
,”
J. Appl. Crystallogr.
,
51
(
6
), pp.
1691
1705
.10.1107/S1600576718015315
20.
Nakaoka
,
T.
,
Satoh
,
H.
,
Honjo
,
S.
, and
Takeuchi
,
H.
,
2012
, “
First-Sharp Diffraction Peaks in Amorphous GeTe and Ge2Sb2Te5 Films Prepared by Vacuum-Thermal Deposition
,”
AIP Adv.
,
2
(
4
), p.
042189
.10.1063/1.4773329
21.
Lee
,
J.
,
Reifenberg
,
J. P.
,
Li
,
Z.
,
Hom
,
L.
,
Asheghi
,
M.
,
Kim
,
S.
,
Wong
,
H.-S. P.
, and
Goodson
,
K. E.
,
2009
, “
Measurement of Anisotropy in the Thermal Conductivity of Ge2Sb2Te5 Films
,”
Proceedings of the 2009 Tenth Annual Non-Volatile Memory Technology Symposium
(
NVMTS
), Portland, OR, Oct. 25–28, pp.
52
57
.10.1109/NVMT.2009.5429777
22.
Lee
,
J.
,
Li
,
Z.
,
Reifenberg
,
J. P.
,
Lee
,
S.
,
Sinclair
,
R.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conductivity Anisotropy and Grain Structure in Ge2Sb2Te5 Films
,”
J. Appl. Phys.
,
109
(
8
), p.
084902
.10.1063/1.3573505
23.
Reifenberg
,
J. P.
,
Panzer
,
M. A.
,
Kim
,
S.
,
Gibby
,
A. M.
,
Zhang
,
Y.
,
Wong
,
S.
,
Wong
,
H.-S. P.
,
Pop
,
E.
, and
Goodson
,
K. E.
,
2007
, “
Thickness and Stoichiometry Dependence of the Thermal Conductivity of GeSbTe Films
,”
Appl. Phys. Lett.
,
91
(
11
), p.
111904
.10.1063/1.2784169
24.
Peng
,
C.
,
Cheng
,
L.
, and
Mansuripur
,
M.
,
1997
, “
Experimental and Theoretical Investigations of Laser-Induced Crystallization and Amorphization in Phase-Change Optical Recording Media
,”
J. Appl. Phys.
,
82
(
9
), pp.
4183
4191
.10.1063/1.366220
25.
Peng
,
C.
, and
Mansuripur
,
M.
,
2000
, “
Measurement of the Thermal Conductivity of Erasable Phase-Change Optical Recording Media
,”
Appl. Opt.
,
39
(
14
), pp.
2347
2352
.10.1364/AO.39.002347
26.
Giraud
,
V.
,
Cluzel
,
J.
,
Sousa
,
V.
,
Jacquot
,
A.
,
Dauscher
,
A.
,
Lenoir
,
B.
,
Scherrer
,
H.
, and
Romer
,
S.
,
2005
, “
Thermal Characterization and Analysis of Phase Change Random Access Memory
,”
J. Appl. Phys.
,
98
(
1
), p.
013520
.10.1063/1.1944910
27.
Lyeo
,
H.-K.
,
Cahill
,
D. G.
,
Lee
,
B.-S.
,
Abelson
,
J. R.
,
Kwon
,
M.-H.
,
Kim
,
K.-B.
,
Bishop
,
S. G.
, and
Cheong
,
B.-K.
,
2006
, “
Thermal Conductivity of Phase-Change Material Ge2Sb2Te5
,”
Appl. Phys. Lett.
,
89
(
15
), p.
151904
.10.1063/1.2359354
You do not currently have access to this content.