Abstract

Measuring the diffusion coefficient of clay-based liner materials is important in estimating and predicting long-term barrier performance in waste containment facilities. Various theoretical models, including the finite cylindrical model, have been commonly used to determine the diffusion properties of clay-based liner materials in leaching tests. However, the assumption of zero-concentration boundary conditions of the traditional finite cylindrical model contradicts the measured variation of concentration in real leaching tests, likely resulting in (1) underestimated and unconservative diffusion coefficient, or (2) requirement of a relatively large liquid-to-soil ratio and frequent leachate replacement in the experiment to maintain the zero-concentration boundary condition. In this study, a theoretical model was developed to evaluate the solute diffusion process within a soil specimen under arbitrary, time-dependent concentration boundary conditions. The proposed model, incorporating the time-dependent boundary conditions, provides efficient calculations of the concentration distribution and the cumulative fraction leached of solute across the soil specimen. The example application of the proposed model to experimental data demonstrates the capability of the proposed model to determine apparent diffusion coefficients of clay-based liner materials without introducing errors associated with the assumption of a zero concentration boundary condition. The proposed model provides a comprehensive method to investigate the dynamic transport behaviors of solutes through clay-based liner materials in future studies.

References

1.
Rowe
,
R. K.
,
2020
, “
Geosynthetic Clay Liners: Perceptions and Misconceptions
,”
Geotext. Geomembr.
,
48
(
2
), pp.
137
156
.10.1016/j.geotexmem.2019.11.012
2.
Scalia
,
J.
,
Bareither
,
C. A.
, and
Shackelford
,
C. D.
,
2018
, “
Advancing the Use of Geosynthetic Clay Liners as Barriers
,”
Geotech. Eng. J. SEAGS AGSSEA
,
49
(
4
), pp.
100
114
.
3.
Shackelford
,
C. D.
,
2014
, “
The ISSMGE Kerry Rowe Lecture: The Role of Diffusion in Environmental Geotechnics
,”
Can. Geotech. J.
,
51
(
11
), pp.
1219
1242
.10.1139/cgj-2013-0277
4.
Kim
,
J. Y.
,
Kim
,
C. L.
, and
Chung
,
C. H.
,
2002
, “
Modeling of Nuclide Release From Low-Level Radioactive Paraffin Waste: A Comparison of Simulated and Real Waste
,”
J. Hazard. Mater.
,
94
(
2
), pp.
161
178
.10.1016/S0304-3894(02)00062-6
5.
Nathwani
,
J.
, and
Phillips
,
C.
,
1980
, “
Leachability of Ra-226 From Uranium Mill Tailings Consolidated With Naturally Occurring Materials and/or Cement
,”
Water, Air, Soil Pollut.
,
14
(
1
), pp.
389
402
.10.1007/BF00291851
6.
Godbee
,
H. W.
,
Compere
,
E. L.
,
Joy
,
D.
,
Kibbey
,
A. H.
,
Moore
,
J. G.
,
Nestor
,
W. C.
, Jr.
,
Anders
,
O.
, and
Neilson
,
R. M.
, Jr
.
1980
, “
Application of Mass Transport Theory to the Leaching of Radionuclides From Waste Solids
,”
Nucl. Chem. Waste Manage.
,
1
(
1
), pp.
29
35
.10.1016/0191-815X(80)90026-1
7.
Fudym
,
O.
,
Batsale
,
J.
,
Santander
,
R.
, and
Bubnovich
,
V.
,
2004
, “
Analytical Solution of Coupled Diffusion Equations in Semi-Infinite Media
,”
ASME J. Heat Mass Transfer Trans. ASME
,
126
(
3
), pp.
471
475
.10.1115/1.1731317
8.
Nestor
,
C. W.
,
1980
, “
Diffusion From Solid Cylinders
,” Oak Ridge National Lab, Oak Ridge, TN, Report No. TRN:
80–002996
.10.2172/5780257
9.
Ganapol
,
B. D.
,
1988
, “
Evaluation of the Material Release From a Cylindrical Waste Form Via Laplace Transforms
,”
Waste Manag.
,
2
, pp.
483
499
.https://archivedproceedings.econference.io/wmsym/1988/V2/72.pdf
10.
Pescatore
,
C.
,
1990
, “
Improved Expressions for Modeling Diffusive, Fractional Cumulative Leaching From Finite-Size Waste Forms
,”
Waste Manag.
,
10
(
2
), pp.
155
159
.10.1016/0956-053X(90)90120-A
11.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2024
, “
Analysis of Multilayer Cylindrical Thermal Conduction With a Time-Varying Convective Boundary Condition
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
3
), p.
031003
.10.1115/1.4063961
12.
Muurinen
,
A.
,
1990
, “
Diffusion of Uranium in Compacted Sodium Bentonite
,”
Eng. Geol.
,
28
(
3–4
), pp.
359
367
.10.1016/0013-7952(90)90020-2
13.
van der Sloot
,
H. A.
,
Kosson
,
D. S.
, and
Hjelmar
,
O.
,
2001
, “
Characteristics, Treatment and Utilization of Residues From Municipal Waste Incineration
,”
Waste Manag.
,
21
(
8
), pp.
753
765
.10.1016/S0956-053X(01)00009-5
14.
Kosson
,
D. S.
,
van der Sloot
,
H. A.
,
Sanchez
,
F.
, and
Garrabrants
,
A. C.
,
2002
, “
An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials
,”
Environ. Eng. Sci.
,
19
(
3
), pp.
159
204
.10.1089/109287502760079188
15.
Garrabrants
,
A. C.
, and
Kosson
,
D. S.
,
2005
, “
Leaching Processes and Evaluation Tests for Inorganic Constituent Release From Cement-Based Matrices
,”
Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes
,
R. D.
Spence
and
C.
Shi
, eds.,
CRC Press
, Boca Raton, FL, pp.
229
317
.
16.
Moon
,
D. H.
, and
Dermatas
,
D.
,
2007
, “
Arsenic and Lead Release From Fly Ash Stabilized/Solidified Soils Under Modified Semi-Dynamic Leaching Conditions
,”
J. Hazard. Mater.
,
141
(
2
), pp.
388
394
.10.1016/j.jhazmat.2006.05.085
17.
Sánchez
,
F. G.
,
Gimmi
,
T.
,
Jurányi
,
F.
,
Van Loon
,
L. R.
, and
Diamond
,
L. W.
,
2009
, “
Linking the Diffusion of Water in Compacted Clays at Two Different Time Scales: Tracer Through-Diffusion and Quasielastic Neutron Scattering
,”
Environ. Sci. Technol.
,
43
(
10
), pp.
3487
3493
.10.1021/es8035362
18.
van der Sloot
,
H. A.
, and
Kosson
,
D. S.
,
2012
, “
Use of Characterisation Leaching Tests and Associated Modelling Tools in Assessing the Hazardous Nature of Wastes
,”
J. Hazard. Mater.
,
207-208
, pp.
36
43
.10.1016/j.jhazmat.2011.03.119
19.
Goreham
,
V. C.
, and
Lake
,
C. B.
,
2013
, “
Influence of Water on Diffusion and Porosity Parameters of Soil-Cement Materials
,”
Can. Geotech. J.
,
50
(
4
), pp.
351
358
.10.1139/cgj-2012-0224
20.
Sample-Lord
,
K. M.
, and
Shackelford
,
C. D.
,
2016a
, “
Solute Diffusion in Bentonite Pastes
,”
J. Geotech. Geoenviron. Eng.
,
142
(
8
), pp.
1
12
.10.1061/(ASCE)GT.1943-5606.0001494.
21.
Sample-Lord
,
K. M.
, and
Shackelford
,
C. D.
,
2016b
, “
Dialysis Method to Control Exchangeable Sodium and Remove Excess Salts From Bentonite
,”
Geotech. Test J.
,
39
(
2
), pp.
206
216
.10.1520/GTJ20150065
22.
Sample-Lord
,
K. M.
,
Zhang
,
W.
,
Tong
,
S.
, and
Shackelford
,
C. D.
,
2020
, “
Apparent Salt Diffusion Coefficients for Soil–Bentonite Backfills
,”
Can. Geotech. J.
,
57
(
5
), pp.
623
634
.10.1139/cgj-2019-0058
23.
Sample-Lord
,
K. M.
,
Ahmed
,
M.
, and
Malusis
,
M. A.
,
2021
, “
Diffusion Through Soil-Bentonite Backfill From a Constructed Vertical Cutoff Wall
,”
Soils Found.
,
61
(
2
), pp.
429
443
.10.1016/j.sandf.2021.01.002
24.
Tong
,
S.
,
Sample-Lord
,
K. M.
, and
Bohnhoff
,
G. L.
,
2021
, “
Diffusion Through Sodium and Polymer Enhanced Bentonites Exposed to Dilute and Aggressive Solutions
,”
Can. Geotech. J.
,
58
(
5
), pp.
603
618
.10.1139/cgj-2019-0809
25.
Wang
,
X.-Y.
,
Garrabrants
,
A. C.
,
van der Sloot
,
H. A.
,
Chen
,
Z.-L.
,
Brown
,
K. G.
,
Hensel
,
B.
, and
Kosson
,
D. S.
,
2023
, “
Leaching and Geochemical Evaluation of Oxyanion Partitioning Within an Active Coal Ash Management Unit
,”
Chem. Eng. J.
,
454
, p.
140406
.10.1016/j.cej.2022.140406
26.
Sample-Lord
,
K. M.
,
Tong
,
S.
,
Bohnhoff
,
G. L.
,
Adeleke
,
D.
, and
Rahman
,
S. A. B.
,
2024
, “
Dialysis Leaching Test Method for Measuring Solute Diffusion in Bentonites
,”
Geotech. Test J.
,
47
(
5
), pp.
1083
1098
.10.1520/GTJ20230533
27.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
, 2nd ed.,
Oxford University Press
,
London
.
28.
ANSI/ANS,
2008
, “
Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure
,” ANSI/ANS-16.1-2003-R2008,
American National Standards Institute (ANSI) and American Nuclear Society (ANS)
,
New York
.
29.
EPA,
2017
, “
Method 1315: Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank Leaching Test
,”
Test Methods for Evaluating Solid Waste, Physical/Chemical Methods
, SW-846,
United States Environmental Protection Agency
,
Washington, DC
.
30.
ASTM International,
2021
, “
Standard Test Method for Accelerated Leach Test for Diffusive Releases From Solidified Waste and a Computer Program to Model Diffusive, Fractional Leaching From Cylindrical Waste Forms
,” ASTM C1308-08, ASTM International, West Conshohocken, PA.
31.
Tong
,
S.
,
Sample-Lord
,
K. M.
,
Bohnhoff
,
G. L.
,
Balken
,
A. B.
, and
Ahmed
,
M.
,
2019
, “
Dialysis Method to Measure Diffusion in Sodium and Enhanced Bentonites
,” Geo-Congress (
GSP312
), Mar. 24–27, Philadelphia, PA, pp.
203
211
.10.1061/9780784482148.002
32.
Lang
,
J.
, and
Wang
,
Q.-Q.
,
2024
, “
Theoretical Modeling of Squeezing Flow in Porous Media Under Arbitrary Boundary Velocity
,”
Tribol. Int.
,
191
(
2024
), p.
109086
.10.1016/j.triboint.2023.109086
You do not currently have access to this content.