Abstract

The second law of thermodynamics explains the nature of all spontaneous processes, and it imposes a limit on the performance of all technologies, from heat engines to refrigerators. These limits are well described as early as Sadi Carnot's 1824 publication that established the field of thermodynamics; researchers later developed the concept of exergy, or the available work, that a thermodynamic system can produce when interacting with a specified environment. In this work, we describe a resistance analogy for thermodynamic systems, in which the need to remove entropy forces some amount of energy to leave the system as heat rejection. Specifically, it is the inverse temperature of the heat sink that resists energy flowing out of the system as heat rejection. An equivalent circuit can be drawn for any thermodynamic system, with energy flowing through different branches of the circuit. The different paths correspond to different energy and exergy flows, including the energy that must flow out of the system as heat rejection and, therefore, cannot contribute to the exergy content of the system. After establishing this equivalent circuit, it is applied to a natural gas combined cycle example problem, a desalination example problem, and a transient heating problem.

References

1.
Carnot
,
S.
,
1824
,
Reflections on the Motive Power of Fire, and on Machines Fitted to Develop That Power
,
Chez Bachelier
,
Paris, France
.
2.
Clausius
,
R.
,
1865
, “
Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie
,”
Ann. Phys. Chem.
,
201
(
7
), pp.
353
400
.10.1002/andp.18652010702
3.
Boltzmann
,
L.
,
1877
, “
On the Relationship Between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium
,”
Sitzungber. Kais. Akad. Wiss. Math.-Naturwiss. Cl. Abt. II
, LXXVI, pp.
373
435
.
4.
Gibbs
,
J. W.
,
1884
, “
On the Fundamental Formula of Statistical Mechanics, With Applications to Astronomy and Thermodynamics
,”
Proc. Am. Assoc. Adv. Sci.
, xxxiii, pp.
57
–5
8
.
5.
Maxwell
,
J. C.
,
1872
,
Theory of Heat
, Longmans, Green, and Co., London, UK.
6.
Gibbs
,
J. W.
,
1873
, “
A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces
,”
Trans. Conn. Acad. Arts Sci.
,
2
, pp.
382
404
.
7.
Gouy
,
L. G.
,
1889
, “
Sur l'énergie utilisable
,”
J. Phys. Théor. Appl.
,
8
, pp.
501
–5
18
.
8.
Abteilung
,
S. A.
, III
,
1903
,
Die Aussichten der Wärmekraftmaschinen. Dampfturbinen Aussichten Wärmekraftmaschinen Vers. Stud.
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
, pp.
195
220
.
9.
Keenan
,
J. H.
,
1932
, “
A Steam Chart for Second Law Analysis
,”
Mech. Eng.
,
54
(11), pp.
195
204
.
10.
Keenan
,
J. H.
,
1941
,
Thermodynamics
, 1st ed.,
Wiley
, New York.
11.
Keenan
,
J. H.
,
1951
, “
Availability and Irreversibility in Thermodynamics
,”
Br. J. Appl. Phys.
,
2
(
7
), pp.
183
192
.10.1088/0508-3443/2/7/302
12.
Rant
,
Z.
,
1956
, “
Exergie, ein neues Wort für ‘Technische Arbeitsfahigkeit’
,”
Forsch. Geb. Ingenieurwes.
,
22
, pp.
36
–3
7
.
13.
Moran
,
M. J.
, ed.,
2014
,
Fundamentals of Engineering Thermodynamics
, 8th ed.,
Wiley
,
Hoboken, NJ
.
14.
Hermann
,
W. A.
,
2006
, “
Quantifying Global Exergy Resources
,”
Energy
,
31
(
12
), pp.
1685
1702
.10.1016/j.energy.2005.09.006
15.
Moran
,
M. J.
, and
Sciubba
,
E.
,
1994
, “
Exergy Analysis: Principles and Practice
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
285
290
.10.1115/1.2906818
16.
Rao
,
A. K.
,
Fix
,
A. J.
,
Yang
,
Y. C.
, and
Warsinger
,
D. M.
,
2022
, “
Thermodynamic Limits of Atmospheric Water Harvesting
,”
Energy Environ. Sci.
,
15
(
10
), pp.
4025
4037
.10.1039/D2EE01071B
17.
Kocher
,
J. D.
,
Yee
,
S. K.
, and
Wang
,
R. Y.
,
2022
, “
A First and Second Law Analysis of a Thermoresponsive Polymer Desiccant Dehumidification and Cooling Cycle
,”
Energy Convers. Manage.
,
253
, p.
115158
.10.1016/j.enconman.2021.115158
18.
Kocher
,
J. D.
, and
Menon
,
A. K.
,
2023
, “
Addressing Global Water Stress Using Desalination and Atmospheric Water Harvesting: A Thermodynamic and Technoeconomic Perspective
,”
Energy Environ. Sci.
,
16
(
11
), pp.
4983
4993
.10.1039/D3EE02916F
19.
Bejan
,
A.
,
2014
, “
‘Entransy,’ and Its Lack of Content in Physics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
5
), p.
055501
.10.1115/1.4026527
20.
Lienhard
,
J. H.
,
Mistry
,
K. H.
,
Sharqawy
,
M. H.
, and
Thiel
,
G. P.
,
2017
, “
Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems
,” Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach, Chapter. 4, H. A. Arafat, ed., Elsevier, Amsterdam, The Netherlands.
21.
Mistry
,
K. H.
,
McGovern
,
R. K.
,
Thiel
,
G. P.
,
Summers
,
E. K.
,
Zubair
,
S. M.
, and
Lienhard
,
J. H.
,
2011
, “
Entropy Generation Analysis of Desalination Technologies
,”
Entropy
,
13
(
10
), pp.
1829
1864
.10.3390/e13101829
22.
Warsinger
,
D. M.
,
Mistry
,
K. H.
,
Nayar
,
K. G.
,
Chung
,
H. W.
, and
Lienhard
,
J. H.
,
2015
, “
Entropy Generation of Desalination Powered by Variable Temperature Waste Heat
,”
Entropy
,
17
(
11
), pp.
7530
7566
.10.3390/e17117530
23.
Kanoğlu
,
M.
,
Özdinç Çarpınlıoğlu
,
M.
, and
Yıldırım
,
M.
,
2004
, “
Energy and Exergy Analyses of an Experimental Open-Cycle Desiccant Cooling System
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
919
932
.10.1016/j.applthermaleng.2003.10.003
24.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2012
,
Exergy: Energy, Environment and Sustainable Development
,
Elsevier
, Oxford, UK.
25.
Lienhard
,
J. H.
,
2019
, “
Entropy Generation Minimization for Energy-Efficient Desalination
,”
ASME
Paper No. IMECE2018-88543.10.1115/IMECE2018-88543
26.
Ali Mandegari
,
M.
,
Farzad
,
S.
, and
Pahlavanzadeh
,
H.
,
2015
, “
Exergy Performance Analysis and Optimization of a Desiccant Wheel System
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
031013
.10.1115/1.4030415
27.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
(
7
), pp.
0
43
.10.1002/er.804
28.
Chen, R., and Morey, M., 2022, “
Most Combined-Cycle Power Plants Employ Two Combustion Turbines With One Steam Turbine
,” U.S. Energy Information Administration,Washington, DC, accessed Sept. 18, 2023, https://www.eia.gov/todayinenergy/detail.php?id=52158
29.
Cao
,
Y.
,
Gao
,
Y.
,
Zheng
,
Y.
, and
Dai
,
Y.
,
2016
, “
Optimum Design and Thermodynamic Analysis of a Gas Turbine and ORC Combined Cycle With Recuperators
,”
Energy Convers. Manage.
,
116
, pp.
32
41
.10.1016/j.enconman.2016.02.073
30.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals & Applications
, 5th ed.,
McGraw-Hill Education
,
New York
.
31.
Alklaibi
,
A. M.
, and
Lior
,
N.
,
2006
, “
Heat and Mass Transfer Resistance Analysis of Membrane Distillation
,”
J. Membr. Sci.
,
282
(
1–2
), pp.
362
369
.10.1016/j.memsci.2006.05.040
32.
Woods
,
J.
,
Mahvi
,
A.
,
Goyal
,
A.
,
Kozubal
,
E.
,
Odukomaiya
,
A.
, and
Jackson
,
R.
,
2021
, “
Rate Capability and Ragone Plots for Phase Change Thermal Energy Storage
,”
Nat. Energy
,
6
(
3
), pp.
295
302
.10.1038/s41560-021-00778-w
33.
Kocher
,
J. D.
,
Woods
,
J.
,
Odukomaiya
,
A.
,
Mahvi
,
A.
, and
Yee
,
S. K.
,
2024
, “
Thermal Battery Cost Scaling Analysis: Minimizing the Cost per kW h
,”
Energy Environ. Sci.
,
17
(
6
), pp.
2206
2218
.10.1039/D3EE03594H
34.
Parker
,
W. P.
, Jr.
,
Kocher
,
J. D.
, and
Menon
,
A.
,
2024
, “
Brine Concentration Using Air Gap Diffusion Distillation: A Performance Model and Cost Comparison With Membrane Distillation for High Salinity Desalination
,”
Desalination
, 580, p.
117560
.10.1016/j.desal.2024.117560
35.
Neagu
,
M.
, and
Bejan
,
A.
,
1999
, “
Constructal-Theory Tree Networks of ‘Constant’ Thermal Resistance
,”
J. Appl. Phys.
,
86
(
2
), pp.
1136
1144
.10.1063/1.370855
36.
Lampinen
,
M. J.
, and
Wikstén
,
R.
,
2006
, “
Theory of Effective Heat-Absorbing and Heat-Emitting Temperatures in Entropy and Exergy Analysis With Applications to Flow Systems and Combustion Processes
,”
J. Non-Equilib. Thermodyn.
,
31
, pp.
257
–2
91
.10.1515/JNETDY.2006.012
37.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
Thermodynamic Modelling and Parametric Study of a Low Temperature Vapour Compression-Absorption System Based on Modified Gouy-Stodola Equation
,”
Energy
,
79
, pp.
407
418
.10.1016/j.energy.2014.11.027
38.
Holmberg
,
H.
,
Ruohonen
,
P.
, and
Ahtila
,
P.
,
2009
, “
Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis
,”
Entropy
,
11
(
4
), pp.
702
712
.10.3390/e11040702
39.
Millas, T.,
2017
, “
HA Technology Now Available at Industry-First 64 Percent Efficiency
,” GE News, General Electric, Cincinnati, OH, accessed Mar. 15, 2024, https://www.ge.com/news/press-releases/ha-technology-now-available-industry-first-64-percent-efficiency
40.
Lim
,
Y. J.
,
Goh
,
K.
,
Kurihara
,
M.
, and
Wang
,
R.
,
2021
, “
Seawater Desalination by Reverse Osmosis: Current Development and Future Challenges in Membrane Fabrication—A Review
,”
J. Membr. Sci.
,
629
, p.
119292
.10.1016/j.memsci.2021.119292
41.
Xu
,
S.
,
Xu
,
L.
,
Wu
,
X.
,
Wang
,
P.
,
Jin
,
D.
,
Hu
,
J.
,
Zhang
,
S.
,
Leng
,
Q.
, and
Wu
,
D.
,
2019
, “
Air-Gap Diffusion Distillation: Theory and Experiment
,”
Desalination
,
467
, pp.
64
78
.10.1016/j.desal.2019.05.014
42.
Schroeder
,
D. V.
,
2021
,
An Introduction to Thermal Physics
,
Oxford University Press
,
New York
.
You do not currently have access to this content.