Abstract

This study proposes a novel multi-scale numerical method for thermal-mechanical analysis of mini-channel heat exchangers (MCHEs) under internal fluid pressure and temperature loads. The method comprises a macro-scale model for global analysis and a meso-scale model for detailed submodel analysis, specifically focusing on the internal fluid pressure effects within the MCHEs. The macroscopic model divides the MCHE into cover plate and homogenized regions subjected to pressure and temperature loads. To incorporate internal pressures into the homogenized MCHE model, mathematical equations are formulated to convert internal fluid pressures into equivalent strain loads. Additionally, a novel equivalent thermal expansion method is introduced, integrating internal fluid pressure loads by prescribing equivalent thermal expansion coefficients alongside spatially-varying nodal temperature fields within the MCHE. The meso-scale models with detailed channel patterns are assigned to specific portions of the homogenized region. The integration of the mesoscale model into the macroscopic framework is achieved through the application of the submodel method. Comparisons between the equivalent and actual MCHE models show that the proposed equivalent method can provide accurate predictions for thermal-mechanical deformations and stresses, and significantly reduce the computational expenses.

References

1.
Liu
,
Y. P.
,
Wang
,
Y.
, and
Huang
,
D. G.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
2.
Wang
,
Y. J.
,
Lai
,
Z. X.
,
Qiu
,
H. R.
,
Wang
,
M. J.
,
Tian
,
W. X.
, and
Su
,
G. H.
,
2023
, “
Experimental and Numerical Analysis of the Liquid Metal Mixing Phenomenon in Complex Jets of Gen-IV Nuclear System
,”
Int. J. Heat Mass Transfer
,
213
, p.
124330
.10.1016/j.ijheatmasstransfer.2023.124330
3.
Mathew
,
M. D.
,
2022
, “
Nuclear Energy: A Pathway Towards Mitigation of Global Warming
,”
Prog. Nucl. Energy.
,
143
, p.
104080
.10.1016/j.pnucene.2021.104080
4.
Wang
,
Z. W.
,
Duan
,
Z. D.
,
He
,
Y. P.
,
Huang
,
C.
,
Liu
,
S. W.
, and
Xue
,
H. X.
,
2023
, “
PIV-Based Experiments on Reverse Flow Characteristics in an Equal-Height-Difference Passive Heat Removal System for Ocean Nuclear Power Plants
,”
Int. J. Heat Mass Transfer
,
217
, p.
124685
.10.1016/j.ijheatmasstransfer.2023.124685
5.
Wang
,
Z. W.
,
He
,
Y. P.
,
Duan
,
Z. D.
,
Huang
,
C.
,
Liu
,
S. W.
, and
Xue
,
H. X.
,
2023
, “
Experimental Study on Transient Flow Characteristics in an Equal-Height-Difference Passive Heat Removal System for Ocean Nuclear Power Plants
,”
Int. J. Heat Mass Transfer
,
208
, p.
124043
.10.1016/j.ijheatmasstransfer.2023.124043
6.
Wu
,
P.
,
Ma
,
Y. D.
,
Gao
,
C. T.
,
Liu
,
W. H.
,
Shan
,
J. Q.
,
Huang
,
Y. P.
,
Wang
,
J. F.
,
Zhang
,
D.
, and
Ran
,
X.
,
2020
, “
A Review of Research and Development of Supercritical Carbon Dioxide Brayton Cycle Technology in Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
368
, p.
110767
.10.1016/j.nucengdes.2020.110767
7.
Syblik
,
J.
,
Vesely
,
L.
,
Entler
,
S.
,
Stepanek
,
J.
, and
Dostal
,
V.
,
2019
, “
Analysis of Supercritical CO2 Brayton Power Cycles in Nuclear and Fusion Energy
,”
Fusion. Eng. Des.
,
146
, pp.
1520
1523
.10.1016/j.fusengdes.2019.02.119
8.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.10.1016/j.egypro.2014.03.128
9.
Yu
,
Y.
,
Bai
,
W.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Li
,
H.
,
Yao
,
M.
, and
Wang
,
H.
,
2017
, “
Coupled Simulation of the Combustion and Fluid Heating of a 300 MW Supercritical CO2 Boiler
,”
Appl. Therm. Eng.
,
113
, pp.
259
267
.10.1016/j.applthermaleng.2016.11.043
10.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
, p.
061801
.10.1115/1.4035603
11.
Singh
,
R.
,
Miller
,
S.
,
Rowlands
,
A.
, and
Jacobs
,
P. A.
,
2013
, “
Dynamic Characteristics of a Direct-Heated Supercritical Carbon-Dioxide Brayton Cycle in a Solar Thermal Power Plant
,”
Energy
,
50
, pp.
194
204
.10.1016/j.energy.2012.11.029
12.
Meshram
,
A.
,
Jaiswal
,
A. K.
,
Khivsara
,
S. D.
,
Ortega
,
J. D.
,
Ho
,
C.
,
Bapat
,
R.
, and
Dutta
,
P.
,
2016
, “
Modeling and Analysis of a Printed Circuit Heat Exchanger for Supercritical CO2 Power Cycle Applications
,”
Appl. Therm. Eng.
,
109
, pp.
861
870
.10.1016/j.applthermaleng.2016.05.033
13.
Yang
,
Y.
,
Li
,
H.
,
Yao
,
M.
,
Gao
,
W.
,
Zhang
,
Y.
, and
Zhang
,
L.
,
2019
, “
Investigation on the Effects of Narrowed Channel Cross-Sections on the Heat Transfer Performance of a Wavy-Channeled PCHE
,”
Int. J. Heat Mass Transfer
,
135
, pp.
33
43
.10.1016/j.ijheatmasstransfer.2019.01.044
14.
De la Torre
,
R.
,
François
,
J. L.
, and
Lin
,
C. X.
,
2020
, “
Assessment of the Design Effects on the Structural Performance of the Printed Circuit Heat Exchanger Under Very High Temperature Condition
,”
Nucl. Eng. Des.
,
365
, p.
110713
.10.1016/j.nucengdes.2020.110713
15.
Li
,
X. L.
,
Tang
,
G. H.
,
Fan
,
Y. H.
, and
Yang
,
D. L.
,
2022
, “
A Performance Recovery Coefficient for Thermal-Hydraulic Evaluation of Recuperator in Supercritical Carbon Dioxide Brayton Cycle
,”
Energy Convers. Manage.
,
256
, p.
115393
.10.1016/j.enconman.2022.115393
16.
Pandey
,
V.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2024
, “
Sizing of Recuperator for sCO2 Brayton Cycle Using Stack-Based Thermal Resistance Framework Coupled With Unit-Cell CFD Model
,”
Int. J. Heat Mass Transfer
,
223
, p.
125179
.10.1016/j.ijheatmasstransfer.2024.125179
17.
Le Pierres
,
R.
,
Southall
,
D.
, and
Osborne
,
S.
,
2011
, “
Impact of Mechanical Design Issues on Printed Circuit Heat Exchangers
,”
Proceedings of SCO2 Power Cycle Symposium
, Boulder, CO, May 24–25, pp.
1
7
.https://www.parker.com/content/dam/Parker-com/Literature/heatric-division/whitepapers/Impact-of-mechanical-design-issues-on-PCHE.pdf
18.
Gan
,
X.
,
Wang
,
J.
,
Liu
,
Z.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Cheng
,
Z.
,
2024
, “
Numerical Study on Thermal Hydraulic and Flow-Induced Noise in Triply Periodic Minimal Surface (TPMS) Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
, p.
041801
.10.1115/1.4064441
19.
Simanjuntak
,
A. P.
, and
Lee
,
J. Y.
,
2020
, “
Mechanical Integrity Assessment of Two-Side Etched Type Printed Circuit Heat Exchanger With Additional Elliptical Channel
,”
Energies
,
13
(
18
), p.
4711
.10.3390/en13184711
20.
Lee
,
Y.
, and
Lee
,
J. I.
,
2014
, “
Structural Assessment of Intermediate Printed Circuit Heat Exchanger for Sodium-Cooled Fast Reactor With Supercritical CO2 Cycle
,”
Ann. Nucl. Energy
,
73
, pp.
84
95
.10.1016/j.anucene.2014.06.022
21.
Hou
,
Y.
, and
Tang
,
G.
,
2019
, “
Thermal-Hydraulic-Structural Analysis and Design Optimization for Micron-Sized Printed Circuit Heat Exchanger
,”
J. Therm. Sci.
,
28
(
2
), pp.
252
261
.10.1007/s11630-018-1062-8
22.
Bennett
,
K.
, and
Chen
,
Y. T.
,
2020
, “
One-Way Coupled Three-Dimensional Fluid-Structure Interaction Analysis of Zigzag-Channel Supercritical CO2 Printed Circuit Heat Exchangers
,”
Nucl. Eng. Des.
,
358
, p.
110434
.10.1016/j.nucengdes.2019.110434
23.
Wang
,
J.
,
Yan
,
X. P.
,
Lu
,
M. J.
,
Sun
,
Y. W.
, and
Wang
,
J. W.
,
2022
, “
Structural Assessment of Printed Circuit Heat Exchangers in Super Critical CO2 Waste Heat Recovery Systems for Ship Applications
,”
J. Therm. Sci.
,
31
(
3
), pp.
689
700
.10.1007/s11630-022-1493-0
24.
Jiang
,
T.
,
Li
,
M.
,
Wang
,
W.
,
Li
,
D.
, and
Liu
,
Z.
,
2022
, “
Fluid-Thermal-Mechanical Coupled Analysis and Optimized Design of Printed Circuit Heat Exchanger With Airfoil Fins of SCO2 Brayton Cycle
,”
J. Therm. Sci.
,
31
(
6
), pp.
2264
2280
.10.1007/s11630-022-1700-z
25.
Xu
,
Z. R.
,
Han
,
Z. R.
,
Tan
,
Y.
,
Chen
,
W. N.
,
Hu
,
C. Y.
,
Wang
,
Y. B.
,
Zhang
,
Q.
,
Wang
,
Q. W.
, and
Ma
,
T.
,
2022
, “
Study on Thermal Deformation of Hybrid Printed Circuit Heat Exchanger for Advanced Nuclear Reactor
,”
Cleaner Energy Syst.
,
3
, p.
100025
.10.1016/j.cles.2022.100025
26.
Xu
,
Z. R.
,
Chen
,
W. N.
,
Lian
,
J.
,
Yang
,
X. W.
,
Wang
,
Q. W.
,
Chen
,
Y. T.
, and
Ma
,
T.
,
2022
, “
Study on Mechanical Stress of Semicircular and Rectangular Channels in Printed Circuit Heat Exchangers
,”
Energy
,
238
, p.
121655
.10.1016/j.energy.2021.121655
27.
Ge
,
L.
,
Jiang
,
W. C.
,
Zhang
,
Y. C.
, and
Tu
,
S. T.
,
2017
, “
Analytical Evaluation of the Homogenized Elastic Constants of Plate-Fin Structures
,”
Int. J. Mech. Sci.
,
134
, pp.
51
62
.10.1016/j.ijmecsci.2017.09.041
28.
Haunstetter
,
J.
, and
Dreißigacker
,
V.
,
2020
, “
Ceramic High Temperature Plate-Fin Heat Exchanger: A Novel Methodology for Thermomechanical Design Investigation
,”
Energy Sci. Eng.
,
8
(
2
), pp.
366
375
.10.1002/ese3.502
29.
Garnier
,
C.
,
Vincent
,
S.
,
Lamagnere
,
P.
,
Lejeail
,
Y.
, and
Cachon
,
L.
,
2022
, “
Thermo-Mechanical Calculation of Printed Circuit Heat Exchanger Using Homogenization
,”
J. Therm. Sci.
,
31
(
6
), pp.
2309
2328
.10.1007/s11630-022-1646-1
30.
Xu
,
Z. R.
,
Tan
,
Y.
,
Liu
,
D. C.
,
Chen
,
W. N.
,
Zhang
,
X. X.
,
Yang
,
X. W.
,
Wang
,
Q. W.
, and
Ma
,
T.
,
2023
, “
Equivalent Mechanical Property Calculation Method of Mini-Channels in Printed Circuit Heat Exchanger
,”
Nucl. Eng. Des.
,
412
, p.
112468
.10.1016/j.nucengdes.2023.112468
31.
Xu
,
Z. R.
,
Zhang
,
X. X.
,
Tan
,
Y.
,
Li
,
R.
,
Yang
,
X. W.
,
Wang
,
Q. W.
,
Chen
,
Y. T.
, and
Ma
,
T.
,
2024
, “
Study on a Numerical Homogenization Method for Printed Circuit Heat Exchanger With Hybrid Mini-Channels
,”
Nucl. Eng. Des.
,
424
, p.
113252
.10.1016/j.nucengdes.2024.113252
32.
Dib
,
J.
,
2007
, “
Contribution à l'élaboration d'un logiciel métier par éléments finis pour l'analyse thermomécanique globale d'échangeurs de chaleur à plaques et ondes
,”
Ph.D thesis
,
Institut National Polytechnique de Lorraine
, Nancy, Lorraine, France.https://hal.science/tel-01752886/
You do not currently have access to this content.