Abstract

Rayleigh–Bénard convection (RBC) in symmetric trapezoidal closed cavities with cavity angle ϕ=70°110°, filled with air, is studied using numerical simulations where inclined side walls are adiabatic. In contrast to rectangular cavities, where no flow exists below a threshold value, there is a weak convection even at a low Rayleigh number (Ra) due to the fact that there is a component of thermal gradient in the horizontal direction in these cavities. Interestingly, these cavities show sudden and significant jumps in the convection, similar to square cavities (Rac = 2585.02 for ϕ=90°), as Ra increases beyond a critical value (Rac). It is noted here that these Rac represent symmetry-breaking pitchfork bifurcations. These bifurcations are seen in both acute (Rac = 8000 for ϕ=70°) and obtuse (Rac = 2300 for ϕ=110°) angle trapezoidal cavities. Moreover, it is observed that multiple steady-state solutions (MSSS) exist as Ra is further increased. A forward and backward continuation approach for numerical simulations is used to track the co-existence of MSSS. These steady-states have co-existing one-roll and two-roll convective patterns beyond another threshold value of Ra. Here, two types of critical Ra have been identified for different cavity angles; one shows the sudden jump in the convection, and the other is the one beyond which MSSS co-exist. Furthermore, a codimension two bifurcation analysis is carried out with Ra and ϕ as two parameters. The bifurcation analysis divides the parameter space into different regions based on the multiplicity of the solutions.

References

1.
Bénard
,
H.
,
1900
, “
Étude Expérimentale Des Courants de Convection Dans Une Nappe liquide - Régime Permanent: Tourbillons Cellulaires
,”
J. Phys. Theor. Appl.
,
9
(
1
), pp.
513
524
.10.1051/jphystap:019000090051300
2.
Bénard
,
H.
,
1901
, “
Les Tourbillons Cellulaires Dans Une Nappe Liquide. - Méthodes Optiques D'observation et D'enregistrement
,”
J. Phys. Theor. Appl.
,
10
(
1
), pp.
254
266
.10.1051/jphystap:0190100100025400
3.
Rayleigh
,
L.
,
1916
, “
On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
32
(
192
), pp.
529
546
.10.1080/14786441608635602
4.
Jeffreys
,
H.
,
1926
, “
The Stability of a Layer of Fluid Heated Below
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
10
), pp.
833
844
.10.1080/14786442608564114
5.
Low
,
A. R.
,
1929
, “
On the Criterion for Stability of a Layer of Viscous Fluid Heated From Below
,”
Proc. R. Soc. London, Ser. A
,
125
, pp.
180
195.
10.1098/rspa.1929.0160
6.
Pellew
,
A.
, and
Southwell
,
R. V.
,
1940
, “
On Maintained Convective Motion in a Fluid Heated From Below
,”
Proc. R. Soc. London, Ser. A
,
176
, pp.
312
343
.10.1098/rspa.1940.0092
7.
Thompson
,
W. B.
,
1951
, “
Thermal Convection in a Magnetic Field
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
42
(
335
), pp.
1417
1432
.10.1080/14786445108560961
8.
Chandrasekhar
,
S.
,
1954
, “
On the Inhibition of Convection by a Magnetic Field
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
45
(
370
), pp.
1177
1191
.10.1080/14786441108520544
9.
Nakagawa
,
Y.
,
1956
, “
Experiments on the Inhibition of Thermal Convection by a Magnetic Field
,”
Proc. R. Soc. London, Ser. A
,
240
, pp.
108
113.
10.1098/rspa.1957.0070
10.
Reid
,
W. H.
, and
Harris
,
D. L.
,
1958
, “
Some Further Results on the Bénard Problem
,”
Phys. Fluids
,
1
(
2
), pp.
102
110
.10.1063/1.1705871
11.
Chandrasekhar
,
S.
, and
Reid
,
W. H.
,
1957
, “
On the Expansion of Functions Which Satisfy Four Boundary Conditions
,”
Proc. Natl. Acad. Sci.
,
43
(
6
), pp.
521
527
.10.1073/pnas.43.6.521
12.
Velte
,
V. W.
, and
Deutschland
,
F. I. B.
,
1962
, “
Zur Stabilität Der Strömung in Einem Horizontalen Rohr Bei Ungleichmässig Erwairmter Wand
,”
Z. Für Angew. Math. Und Phys.
,
13
(
6
), pp.
591
600
.10.1007/BF01595583
13.
Kurzweg
,
U. H.
,
1965
, “
Convective Instability of a Hydromagnetic Fluid Within a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
35
41
.10.1016/0017-9310(65)90095-5
14.
Catton
,
I.
, and
Edwards
,
D. K.
,
1967
, “
Effect of Side Walls on Natural Convection Between Horizontal Plates Heated From Below
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
89
(
4
), pp.
295
299
.10.1115/1.3614388
15.
Stephen
,
D.
,
1967
, “
Convection in a Box: Linear Theory
,”
J. Fluid Mech.
,
30
(
3
), pp.
465
478.
10.1017/S0022112067001545
16.
Catton
,
I.
,
1970
, “
Convection in a Closed Rectangular Region: The Onset of Motion
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
92
(
1
), pp.
186
188
.10.1115/1.3449626
17.
Catton
,
I.
,
1972
, “
The Effect of Insulating Vertical Walls on the Onset of Motion in a Fluid Heated From Below
,”
Int. J. Heat Mass Transfer
,
15
(
4
), pp.
665
672
.10.1016/0017-9310(72)90112-3
18.
Luijkx
,
J. M.
, and
Platten
,
J. K.
,
1981
, “
On the Onset of Free Convection in a Rectangular Channel
,”
J. Non-Equilib. Thermodyn.
,
6
(
3
), pp.
141
158
.10.1515/jnet.1981.6.3.141
19.
Xia
,
C.
, and
Murthy
,
J. Y.
,
2002
, “
Buoyancy-Driven Flow Transitions in Deep Cavities Heated From Below
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
4
), pp.
650
659
.10.1115/1.1481356
20.
Pallares
,
J.
,
Grau
,
F. X.
, and
Giralt
,
F.
,
1999
, “
Flow Transitions in Laminar Rayleigh-Bénard Convection in a Cubical Cavity at Moderate Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
,
42
(
4
), pp.
753
769
.10.1016/S0017-9310(98)00192-6
21.
Puigjaner
,
D.
,
Herrero
,
J.
,
Giralt
,
F.
, and
Simó
,
C.
,
2004
, “
Stability Analysis of the Flow in a Cubical Cavity Heated From Below
,”
Phys. Fluids
,
16
(
10
), pp.
3639
3655
.10.1063/1.1778031
22.
Puigjaner
,
D.
,
Herrero
,
J.
,
Simó
,
C.
, and
Giralt
,
F.
,
2008
, “
Bifurcation Analysis of Steady Rayleigh-Bénard Convection in a Cubical Cavity With Conducting Sidewalls
,”
J. Fluid Mech.
,
598
, pp.
393
427
.10.1017/S0022112007000080
23.
Lee
,
N. Y.
,
Schultz
,
W. W.
, and
Boyd
,
J. P.
,
1989
, “
Stability of Fluid in a Rectangular Enclosure by Spectral Method
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
513
520
.10.1016/0017-9310(89)90139-7
24.
Gelfgat
,
A. Y.
, and
Tanasawa
,
I.
,
1994
, “
Numerical Analysis of Oscillatory Instability of Buoyancy Convection With the Galerkin Spectral Method
,”
Numer. Heat Transfer
,
25
(
6
), pp.
627
648
.10.1080/10407789408955970
25.
Mizushima
,
J.
,
1995
, “
Onset of the Thermal Convection in a Finite Two-Dimensional Box
,”
J. Phys. Soc. Jpn.
,
64
(
7
), pp.
2420
2432
.10.1143/JPSJ.64.2420
26.
Gelfgat
,
A. Y.
,
1999
, “
Different Modes of Rayleigh–Bénard Instability in Two- and Three-Dimensional Rectangular Enclosures
,”
J. Comput. Phys.
,
156
(
2
), pp.
300
324
.10.1006/jcph.1999.6363
27.
Gelfgat
,
A. Y.
, and
Bar-Yoseph
,
P. Z.
,
2004
, “
Multiple Solutions and Stability of Confined Convective and Swirling flows - A Continuing Challenge
,”
Int. J. Numer. Methods Heat Fluid Flow
,
14
(
2
), pp.
213
241
.10.1108/09615530410513818
28.
Venturi
,
D.
,
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2010
, “
Stochastic Bifurcation Analysis of Rayleigh-Bénard Convection
,”
J. Fluid Mech.
,
650
, pp.
391
413
.10.1017/S0022112009993685
29.
Bhattacharya
,
M.
, and
Basak
,
T.
,
2021
, “
Analysis of Multiple Steady States for Natural Convection of Newtonian Fluids in a Square Enclosure
,”
Phys. Fluids
,
33
(
10
), p.
103605
.10.1063/5.0064899
30.
Schmidt
,
R. J.
,
1937
, “
On the Instability of a Spherical Shell of Fluid Heated From Within
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
24
(
160
), pp.
228
239
.10.1080/14786443708565117
31.
Touihri
,
R.
,
Ben Hadid
,
H.
, and
Henry
,
D.
,
1999
, “
On the Onset of Convective Instabilities in Cylindrical Cavities Heated From Below. I. Pure Thermal Case
,”
Phys. Fluids
,
11
(
8
), pp.
2078
2088
.10.1063/1.870070
32.
Saxena
,
A.
,
Kishor
,
V.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2020
, “
Whole Field Measurements to Identify the Critical Rayleigh Number for the Onset of Natural Convection in Top Open Cavity
,”
Exp. Heat Transfer
,
33
(
2
), pp.
123
140
.10.1080/08916152.2019.1586800
33.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
34.
Iyican
,
L.
,
Witte
,
L. C.
, and
Bayazitogˇlu
,
Y.
,
1980
, “
An Experimental Study of Natural Confection in Trapezoidal Enclosures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
102
(
4
), pp.
648
653
.10.1115/1.3244366
35.
Lee
,
T. S.
,
1984
, “
Computational and Experimental Studies of Convective Fluid Motion and Heat Transfer in Inclined Non-Rectangular Enclosures
,”
Int. J. Heat Fluid Flow
,
5
(
1
), pp.
29
36
.10.1016/0142-727X(84)90009-2
36.
Lee
,
T. S.
,
1991
, “
Numerical Experiments With Fluid Convection in Tilted Nonrectangular Enclosures
,”
Numer. Heat Transfer
,
19
(
4
), pp.
487
499
.10.1080/10407789108944861
37.
Perić
,
M.
,
1993
, “
Natural Convection in Trapezoidal Cavities
,”
Numer. Heat Transfer
,
24
(
2
), pp.
213
219
.10.1080/10407789308902614
38.
Khan
,
Z. H.
,
Hamid
,
M.
,
Khan
,
W. A.
,
Sun
,
L.
, and
Liu
,
H.
,
2021
, “
Thermal Non-Equilibrium Natural Convection in a Trapezoidal Porous Cavity With Heated Cylindrical Obstacles
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105460
.10.1016/j.icheatmasstransfer.2021.105460
39.
Gibanov
,
N. S.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2016
, “
Free Convection in a Trapezoidal Cavity Filled With a Micropolar Fluid
,”
Int. J. Heat Mass Transfer
,
99
(
August
), pp.
831
838
.10.1016/j.ijheatmasstransfer.2016.04.056
40.
Aghighi
,
M. S.
,
Ammar
,
A.
,
Masoumi
,
H.
, and
Lanjabi
,
A.
,
2020
, “
Rayleigh–Bénard Convection of a Viscoplastic Liquid in a Trapezoidal Enclosure
,”
Int. J. Mech. Sci.
,
180
, p.
105630
.10.1016/j.ijmecsci.2020.105630
41.
Saha
,
S. K.
,
2020
, “
Magnetohydrodynamic Buoyancy Driven Al2O3-Water Nanofluid Flow in a Differentially Heated Trapezoidal Enclosure With a Cylindrical Barrier
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104593
.10.1016/j.icheatmasstransfer.2020.104593
42.
Krishnan
,
M.
,
Ugaz
,
V. M.
, and
Burns
,
M. A.
,
2002
, “
PCR in a Rayleigh-Bénard Convection Cell
,”
Science
,
298
(
5594
), pp.
793
793
.10.1126/science.298.5594.793
43.
Moore
,
P.
,
2005
, “
Replicating Success
,”
Nature
,
435
(
7039
), pp.
235
235
.10.1038/435235a
44.
Chang
,
H. G.
,
Tsai
,
Y.
,
Tsai
,
C.
,
Lin
,
C.
,
Lee
,
P.
,
Teng
,
P.
,
Su
,
C.
, and
Jeng
,
C.
,
2012
, “
A Thermally Baffled Device for Highly Stabilized Convective PCR
,”
Biotechnol. J.
,
7
(
5
), pp.
662
666
.10.1002/biot.201100453
45.
Braun
,
D.
,
2004
, “
PCR by Thermal Convection
,”
Mod. Phys. Lett. B
,
18
(
16
), pp.
775
784
.10.1142/S0217984904007049
46.
Braun
,
D.
,
Goddard
,
N. L.
, and
Libchaber
,
A.
,
2003
, “
Exponential DNA Replication by Laminar Convection
,”
Phys. Rev. Lett.
,
91
(
15
), p.
158103
.10.1103/PhysRevLett.91.158103
47.
Miroshnichenko
,
I. V.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2017
, “
Natural Convection in a Trapezoidal Cavity Filled With a Micropolar Fluid Under the Effect of a Local Heat Source
,”
Int. J. Mech. Sci.
,
120
, pp.
182
189
.10.1016/j.ijmecsci.2016.11.028
48.
Saleh
,
H.
,
Roslan
,
R.
, and
Hashim
,
I.
,
2011
, “
Natural Convection Heat Transfer in a Nanofluid-Filled Trapezoidal Enclosure
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
194
201
.10.1016/j.ijheatmasstransfer.2010.09.053
49.
Al-Sayegh
,
R.
,
2018
, “
Influence of External Magnetic Field Inclination on Three-Dimensional Buoyancy-Driven Convection in an Open Trapezoidal Cavity Filled With CNT-Water Nanofluid
,”
Int. J. Mech. Sci.
,
148
, pp.
756
765
.10.1016/j.ijmecsci.2018.09.032
50.
Selimefendigil
,
F.
,
2018
, “
Natural Convection in a Trapezoidal Cavity With an Inner Conductive Object of Different Shapes and Filled With Nanofluids of Different Nanoparticle Shapes
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
42
(
2
), pp.
169
184
.10.1007/s40997-017-0083-3
51.
Varun Kumar
,
R. S.
,
Sarris
,
I. E.
,
Sowmya
,
G.
,
Madhukesh
,
J. K.
, and
Prasannakumara
,
B. C.
,
2022
, “
Effect of Electromagnetic Field on the Thermal Performance of Longitudinal Trapezoidal Porous Fin Using DTM–Pade Approximant
,”
Heat Transfer
,
51
(
4
), pp.
3313
3333
.10.1002/htj.22450
52.
Jayaprakash
,
M. C.
,
Alzahrani
,
H. A. H.
,
Sowmya
,
G.
,
Varun Kumar
,
R. S.
,
Malik
,
M. Y.
,
Alsaiari
,
A.
, and
Prasannakumara
,
B. C.
,
2021
, “
Thermal Distribution Through a Moving Longitudinal Trapezoidal Fin With Variable Temperature-Dependent Thermal Properties Using DTM-Pade Approximant
,”
Case Stud. Therm. Eng.
,
28
, p.
101697
.10.1016/j.csite.2021.101697
53.
Varun Kumar
,
R. S.
, and
Sowmya
,
G.
,
2022
, “
A Novel Analysis for Heat Transfer Enhancement in a Trapezoidal Fin Wetted by MoS2 + Fe3O4 + NiZnFe2O4 - Methanol Based Ternary Hybrid Nanofluid
,” Waves Random Complex Media (
epub
).10.1080/17455030.2022.2134605
54.
Suresh Goud
,
J.
,
Srilatha
,
P.
,
Varun Kumar
,
R. S.
,
Sowmya
,
G.
,
Gamaoun
,
F.
,
Nagaraja
,
K. V.
,
Singh Chohan
,
J.
,
Khan
,
U.
, and
Eldin
,
S. M.
,
2023
, “
Heat Transfer Analysis in a Longitudinal Porous Trapezoidal Fin by non-Fourier Heat Conduction Model: An Application of Artificial Neural Network With Levenberg–Marquardt Approach
,”
Case Stud. Therm. Eng.
,
49
, p.
103265
.10.1016/j.csite.2023.103265
55.
Maurya
,
G.
,
Singh
,
S.
, and
Kumar
,
L.
,
2021
, “
Stability of Rayleigh-Bénard Convection in Trapezoidal Cavities
,”
International ISHMT-ASTFE Heat and Mass Transfer Conference
, IIT Madras, Chennai, Tamil Nadu, Dec. 17–20, pp.
2751
2756
.10.1615/IHMTC-2021.4170
56.
Hinojosa
,
J. F.
,
Estrada
,
C. A.
,
Cabanillas
,
R. E.
, and
Alvarez
,
G.
,
2005
, “
Numerical Study of Transient and Steady-State Natural Convection and Surface Thermal Radiation in a Horizontal Square Open Cavity
,”
Numer. Heat Transfer, Part A
,
48
(
2
), pp.
179
196
.10.1080/10407780590948936
57.
Angirasa
,
D.
,
Pourquié
,
M. J. B. M.
, and
Nieuwstadt
,
F. T. M.
,
1992
, “
Numerical Study of Transient and Steady Laminar Buoyancy-Driven Flows and Heat Transfer in a Square Open Cavity
,”
Numer. Heat Transfer, Part A
,
22
(
2
), pp.
223
239
.10.1080/10407789208944766
58.
Ouertatani
,
N.
,
Ben Cheikh
,
N.
,
Ben Beya
,
B.
, and
Lili
,
T.
,
2008
, “
Numerical Simulation of Two-Dimensional Rayleigh-Bénard Convection in an Enclosure
,”
C. R. Mec.
,
336
(
5
), pp.
464
470
.10.1016/j.crme.2008.02.004
59.
Sandberg
,
M.
,
Berg
,
N.
, and
Johnsson
,
G.
,
2011
, “
Rayleigh-Bénard Convection
,”
Bachelor degree project
, SA104X, KTH Mechanics, p.
29
.https://kth.divaportal.org/smash/get/diva2:571135/FULLTEXT01.pdf
60.
Ortiz-Pérez
,
A. S.
, and
Pérez-Reyes
,
I.
,
2019
, “
The Linear Hydrodynamic Stability of a Fluid in a Cavity With Finite Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
145
, p.
118768
.10.1016/j.ijheatmasstransfer.2019.118768
You do not currently have access to this content.