Abstract

In the present paper, a two-dimensional transient numerical study has been performed to investigate the influence of different fin designs on the melting and heat transfer characteristics of a phase change material (PCM), i.e., Paraffin wax, filled in square enclosures equipped with fin structures. Five distinct fin designs were examined: single rectangular, double rectangular, double triangular, double angled, and wire mesh. It is worth noting that all these fin designs have the equal heat transfer area. An isothermal heat source of temperature 350 K is provided at the left wall of the square enclosure and the remaining walls are assumed to be adiabatic. Six parameters were evaluated to determine the best fin configurations: melting time, enhancement ratio (ER), time savings, energy stored, mean power, and Nusselt number. The results show that all the fin designs outperformed as compared to model 1 (no fin configuration). Among the finned configurations, model 2 had the poorest performance, taking 1314 s to complete the melting, while model 6 had the most efficient fin design, with a melting time reduced by 67.53% compared to model 1. Model 6 also had the highest ER and mean power, i.e., 70.43% and 199.51%, respectively and as the melting process continued, the Nusselt number decreased. In addition to the above, we optimized the element size of the wire-mesh fin design using RSM methodology. This optimized design decreases the melting period by 70.04%. Overall, present study provides a comprehensive analysis of different finned configurations for improving the melting performance of the PCM in square enclosures and found wire-mesh fin design most appropriate and promising.

References

1.
Wang
,
J.
,
Liu
,
S.
,
Liu
,
Z.
,
Meng
,
X.
,
Xu
,
C.
, and
Gao
,
W.
,
2022
, “
An Experimental Comparison on Regional Thermal Environment of the High-Density Enclosed Building Groups With Retro-Reflective and High-Reflective Coatings
,”
Energy Build.
,
259
, p.
111864
.10.1016/j.enbuild.2022.111864
2.
Meng
,
X.
,
Yan
,
L.
, and
Liu
,
F.
,
2022
, “
A New Method to Improve Indoor Environment: Combining the Living Wall With Air-Conditioning
,”
Building Environ.
,
216
, p.
108981
.10.1016/j.buildenv.2022.108981
3.
Uniyal
,
A.
,
Prajapati
,
Y. K.
,
Ranakoti
,
L.
,
Bhandari
,
P.
,
Singh
,
T.
,
Gangil
,
B.
,
Sharma
,
S.
,
Upadhyay
,
V. V.
, and
Eldin
,
S. M.
,
2022
, “
Recent Advancements in Evacuated Tube Solar Water Heaters: A Critical Review of the Integration of Phase Change Materials and Nanofluids With ETCs
,”
Energies
,
15
(
23
), p.
8999
.10.3390/en15238999
4.
Meng
,
X.
,
Meng
,
L.
,
Gao
,
Y.
, and
Li
,
H.
,
2022
, “
A Comprehensive Review on the Spray Cooling System Employed to Improve the Summer Thermal Environment: Application Efficiency, Impact Factors, and Performance Improvement
,”
Building Environ.
,
217
, p.
109065
.10.1016/j.buildenv.2022.109065
5.
Li
,
Z.
,
Lu
,
Y.
,
Huang
,
R.
,
Chang
,
J.
,
Yu
,
X.
,
Jiang
,
R.
,
Yu
,
X.
, and
Roskilly
,
A. P.
,
2021
, “
Applications and Technological Challenges for Heat Recovery, Storage and Utilisation With Latent Thermal Energy Storage
,”
Appl. Energy
,
283
, p.
116277
.10.1016/j.apenergy.2020.116277
6.
Rajabifar
,
B.
,
2015
, “
Enhancement of the Performance of a Double Layered Microchannel Heatsink Using PCM Slurry and Nanofluid Coolants
,”
Int. J. Heat Mass Transfer
,
88
, pp.
627
635
.10.1016/j.ijheatmasstransfer.2015.05.007
7.
Farahani
,
S. D.
,
Farahani
,
A. D.
, and
Hajian
,
E.
,
2021
, “
Effect of PCM and Porous Media/Nanofluid on the Thermal Efficiency of Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105546
.10.1016/j.icheatmasstransfer.2021.105546
8.
Xiao
,
Y.
,
Huang
,
P.
,
Wei
,
G.
,
Cui
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2022
, “
State-of-the-Art Review on Performance Enhancement of Photovoltaic/Thermal System Integrated With Phase Change Materials
,”
J. Energy Storage
,
56
, p.
106073
.10.1016/j.est.2022.106073
9.
Khanna
,
S.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2018
, “
Optimization of Finned Solar Photovoltaic Phase Change Material (Finned pv Pcm) System
,”
Int. J. Therm. Sci.
130
, pp.
313
322
.10.1016/j.ijthermalsci.2018.04.033
10.
Uniyal
,
A.
,
Prajapati
,
Y. K.
, and
Suman
,
S.
,
2023
, “
Heat Transfer and Melting Characteristics of the Phase Change Material Inside U-Tube Based Evacuated Tube Solar Collector
,”
J. Energy Storage
,
62
, p.
106918
.10.1016/j.est.2023.106918
11.
Said
,
M. A.
, and
Hassan
,
H.
,
2021
, “
Impact of Energy Storage of New Hybrid System of Phase Change Materials Combined With Air-Conditioner on Its Heating and Cooling Performance
,”
J. Energy Storage
,
36
, p.
102400
.10.1016/j.est.2021.102400
12.
Allouche
,
Y.
,
Varga
,
S.
,
Bouden
,
C.
, and
Oliveira
,
A. C.
,
2017
, “
Dynamic Simulation of an Integrated Solar-Driven Ejector Based Air Conditioning System With PCM Cold Storage
,”
Appl. Energy
,
190
, pp.
600
611
.10.1016/j.apenergy.2017.01.001
13.
Osterman
,
E.
,
Butala
,
V.
, and
Stritih
,
U.
,
2015
, “
PCM Thermal Storage System for Free Heating and Cooling of Buildings
,”
Energy Build
,
106
, pp.
125
133
.10.1016/j.enbuild.2015.04.012
14.
Kamkari
,
B.
, and
Shokouhmand
,
H.
,
2014
, “
Experimental Investigation of Phase Change Material Melting in Rectangular Enclosures With Horizontal Partial Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
839
851
.10.1016/j.ijheatmasstransfer.2014.07.056
15.
Yang
,
Y.
,
Pu
,
W.
,
Yao
,
Z.
,
Zhang
,
Q.
,
Wang
,
J.
, and
Han
,
D.
,
2023
, “
Experimental and Numerical Investigations on the Intermittent Heat Transfer Performance of Rectangular Cavity Plate Fin Phase Change Material Based Heat Sink
,”
J. Energy Storage
,
60
, p.
106607
.10.1016/j.est.2023.106607
16.
Temel
,
U. N.
, and
Kilinc
,
F.
,
2023
, “
Experimental Investigation of Variable Fin Length on Melting Performance in a Rectangular Enclosure Containing Phase Change Material
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106658
.10.1016/j.icheatmasstransfer.2023.106658
17.
Chen
,
G.
,
Shi
,
Y.
,
Ye
,
H.
, and
Kang
,
H.
,
2023
, “
Experimental Study on Phase Change Material Based Thermal Management Design With Adjustable Fins for Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
221
, p.
119808
.10.1016/j.applthermaleng.2022.119808
18.
Izadi
,
M.
,
Hajjar
,
A.
,
Alshehri
,
H. M.
,
Saleem
,
A.
, and
Galal
,
A. M.
,
2022
, “
Analysis of Applying Fin for Charging Process of Phase Change Material Inside H-Shaped Thermal Storage
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106421
.10.1016/j.icheatmasstransfer.2022.106421
19.
Ji
,
C.
,
Qin
,
Z.
,
Low
,
Z.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2018
, “
Non-Uniform Heat Transfer Suppression to Enhance PCM Melting by Angled Fins
,”
Appl. Therm. Eng.
,
129
, pp.
269
279
.10.1016/j.applthermaleng.2017.10.030
20.
Masoumpour-Samakoush
,
M.
,
Miansari
,
M.
,
Ajarostaghi
,
S. S. M.
, and
Arıcı
,
M.
,
2021
, “
Impact of Innovative Fin Combination of Triangular and Rectangular Fins on Melting Process of Phase Change Material in a Cavity
,”
J. Energy Storage
,
45
(
July
), p.
103545
.10.1016/j.est.2021.103545
21.
Rawat
,
P.
,
Sherwani
,
A. F.
, and
Ashwni
,
2023
, “
A Numerical Study on the Impact of Fin Length Arrangement and Material on the Melting of PCM in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
205
, p.
123932
.10.1016/j.ijheatmasstransfer.2023.123932
22.
Laouer
,
A.
,
Teggar
,
M.
,
Tunçbilek
,
E.
,
Arıcı
,
M.
,
Hachani
,
L.
, and
Ismail
,
K. A.
,
2022
, “
Melting of Hybrid Nano-Enhanced Phase Change Material in an Inclined Finned Rectangular Cavity for Cold Energy Storage
,”
J. Energy Storage
,
50
, p.
104185
.10.1016/j.est.2022.104185
23.
Qin
,
Z.
,
Low
,
Z. H.
,
Ji
,
C.
, and
Duan
,
F.
,
2022
, “
Efficacy of Angled Metallic Fins for Enhancing Phase Change Material Melting
,”
Int. Commun. Heat Mass Transfer
,
132
, p.
105921
.10.1016/j.icheatmasstransfer.2022.105921
24.
Laouer
,
A.
,
Al-Farhany
,
K.
,
Al-Dawody
,
M. F.
, and
Hashem
,
A. L.
,
2022
, “
A Numerical Study of Phase Change Material Melting Enhancement in a Horizontal Rectangular Enclosure With Vertical Triple Fins
,”
Int. Commun. Heat Mass Transfer
,
137
, p.
106223
.10.1016/j.icheatmasstransfer.2022.106223
25.
Tian
,
L. L.
,
Liu
,
X.
,
Chen
,
S.
, and
Shen
,
Z. G.
,
2020
, “
Effect of Fin Material on PCM Melting in a Rectangular Enclosure
,”
Appl. Therm. Eng.
,
167
, p.
114764
.10.1016/j.applthermaleng.2019.114764
26.
Oliveski
,
R. D. C.
,
Becker
,
F.
,
Rocha
,
L. A. O.
,
Biserni
,
C.
, and
Eberhardt
,
G. E. S.
,
2021
, “
Design of Fin Structures for Phase Change Material (PCM) Melting Process in Rectangular Cavities
,”
J. Energy Storage
,
35
, p.
102337
.10.1016/j.est.2021.102337
27.
Abdulateef
,
A. M.
,
Abdulateef
,
J.
,
Mat
,
S.
,
Sopian
,
K.
,
Elhub
,
B.
, and
Mussa
,
M. A.
,
2018
, “
Experimental and Numerical Study of Solidifying Phase-Change Material in a Triplex-Tube Heat Exchanger With Longitudinal/Triangular Fins
,”
Int. Commun. Heat Mass Transfer
,
90
, pp.
73
84
.10.1016/j.icheatmasstransfer.2017.10.003
28.
Fadl
,
M.
, and
Eames
,
P. C.
,
2019
, “
Numerical Investigation of the Influence of Mushy Zone Parameter Amush on Heat Transfer Characteristics in Vertically and Horizontally Oriented Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
151
, pp.
90
99
.10.1016/j.applthermaleng.2019.01.102
29.
Tavakoli
,
A.
,
Farzaneh-Gord
,
M.
, and
Ebrahimi-Moghadam
,
A.
,
2023
, “
Using Internal Sinusoidal Fins and Phase Change Material for Performance Enhancement of Thermal Energy Storage Systems: Heat Transfer and Entropy Generation Analyses
,”
Renewable Energy
,
205
, pp.
222
237
.10.1016/j.renene.2023.01.074
30.
Olfian
,
H.
,
Soheil
,
S.
,
Ajarostaghi
,
M.
, and
Farhadi
,
M.
,
2020
, “
Melting and Solidification Processes of Phase Change Material in Evacuated Tube Solar Collector With U-Shaped Spirally Corrugated Tube
,”
Appl. Therm. Eng
,
182
, p.
116149
.10.1016/j.applthermaleng.2020.116149
31.
Khan
,
L. A.
, and
Khan
,
M. M.
,
2020
, “
Role of Orientation of Fins in Performance Enhancement of a Latent Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
175
, p.
115408
.10.1016/j.applthermaleng.2020.115408
32.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
Hoboken, NJ
.
33.
Box
,
G. E.
, and
Draper
,
N. R.
,
2007
,
Response Surfaces, Mixtures, and Ridge Analyses
,
Wiley
,
Hoboken, NJ
.
34.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol
,
12
(
4
), pp.
214
219
.10.1080/00224065.1980.11980968
35.
Del Castillo
,
E.
,
Montgomery
,
D. C.
, and
McCarville
,
D. R.
,
1996
, “
Modified Desirability Functions for Multiple Response Optimization
,”
J. Qual. Technol.
,
28
(
3
), pp.
337
345
.10.1080/00224065.1996.11979684
36.
Maheswari
,
A.
, and
Prajapati
,
Y. K.
,
2023
, “
Thermal Performance Enhancement and Optimization of Double-Layer Microchannel Heat Sink With Intermediate Perforated Rectangular Fins
,”
Int. J. Therm. Sci.
,
185
, p.
108043
.10.1016/j.ijthermalsci.2022.108043
You do not currently have access to this content.