Abstract

Thermal energy storage (TES) systems are a promising solution for reutilizing industrial waste heat (IWH) for distributed thermal users. These systems have tremendous potential to increase energy efficiency and decrease carbon emissions in both industrial and building sectors. To further enhance the utilization rate of industrial waste heat, optimizing TES systems has attracted significant attention. This study explores the solidification process of a vertical shell-and-tube TES unit with the annulus filled with a composite phase-change material (PCM) comprising paraffin and copper foam. Numerical simulations are employed, which are verified by visualization experiments of the TES unit. To improve the thermal performance of the unit, porous media with nonuniform parameters is implemented. Nonuniform pore structures, featuring radially varying gradients (positive, i.e., porosity increasing in the positive radial direction, and negative, i.e., porosity decreasing in the positive radial direction) that are oriented perpendicular to the flow direction of the inner tube, are compared to uniformly dispersed pore structures. Results indicate that, compared to the uniform structure, the utilization of the positive gradient shortens the time to complete solidification by 15.9% while simultaneously increasing temperature uniformity by 14.6%. In contrast, the negative gradient results in a 5.7% increase in complete solidification time and a 31.0% decrease in temperature uniformity. The optimum gradient porosity combination (0.87-0.94-0.97) is obtained by the response surface method to optimize the structural parameters of the radial gradient porosity.

References

1.
Chua
,
K. J.
,
Chou
,
S. K.
,
Yang
,
W. M.
, and
Yan
,
J.
,
2013
, “
Achieving Better Energy-Efficient Air Conditioning – a Review of Technologies and Strategies
,”
Appl. Energy
,
104
, pp.
87
104
.10.1016/j.apenergy.2012.10.037
2.
Ding
,
C.
,
Szum
,
C.
,
Li
,
H.
,
Zhou
,
N.
, and
Nesler
,
C.
,
2021
, “
Data-Driven Analysis Tool Plays Critical Role in Climate Neutral Buildings: Improving Energy Efficiency and Reducing Emissions
,”
Adv. Appl. Energy
,
2
, p.
100014
.10.1016/j.adapen.2021.100014
3.
Ali
,
H. M.
,
Janjua
,
M. M.
,
Sajjad
,
U.
, and
Yan
,
W.-M.
,
2019
, “
A Critical Review on Heat Transfer Augmentation of Phase Change Materials Embedded With Porous Materials/Foams
,”
Int. J. Heat Mass Transfer
,
135
, pp.
649
673
.10.1016/j.ijheatmasstransfer.2019.02.001
4.
Du
,
K.
,
Calautit
,
J.
,
Eames
,
P.
, and
Wu
,
Y.
,
2021
, “
A State-of-the-Art Review of the Application of Phase Change Materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for Recovering Low-Temperature Industrial Waste Heat (IWH) for Distributed Heat Supply
,”
Renewable Energy
,
168
, pp.
1040
1057
.10.1016/j.renene.2020.12.057
5.
Rehman
,
T.-U.
,
Ali
,
H. M.
,
Saieed
,
A.
,
Pao
,
W.
, and
Ali
,
M.
,
2018
, “
Copper Foam/PCMs Based Heat Sinks: An Experimental Study for Electronic Cooling Systems
,”
Int. J. Heat Mass Transfer
,
127
, pp.
381
393
.10.1016/j.ijheatmasstransfer.2018.07.120
6.
Khatod
,
K. J.
,
Katekar
,
V. P.
, and
Deshmukh
,
S. S.
,
2022
, “
An Evaluation for the Optimal Sensible Heat Storage Material for Maximizing Solar Still Productivity: A State-of-the-Art Review
,”
J. Energy Storage
,
50
, p.
104622
.10.1016/j.est.2022.104622
7.
Yu
,
S.
,
Han
,
D.
,
He
,
W.
,
Zhou
,
M.
,
Zhu
,
L.
,
Gao
,
Y.
,
Cui
,
G.
, and
Peng
,
T.
,
2023
, “
Analysis and Optimization of Transient Heat Dissipation Characteristics of High Power Resistors With a Sensible Heat Storage Method
,”
Appl. Therm. Eng.
,
226
, p.
120246
.10.1016/j.applthermaleng.2023.120246
8.
Du
,
Z.
,
Liu
,
G.
,
Huang
,
X.
,
Xiao
,
T.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Numerical Studies on a Fin-Foam Composite Structure Towards Improving Melting Phase Change
,”
Int. J. Heat Mass Transfer
,
208
, p.
124076
.10.1016/j.ijheatmasstransfer.2023.124076
9.
Li
,
F.
,
Huang
,
X.
,
Li
,
Y.
,
Lu
,
L.
,
Meng
,
X.
,
Yang
,
X.
, and
Sundén
,
B.
,
2023
, “
Application and Analysis of Flip Mechanism in the Melting Process of a Triplex-Tube Latent Heat Energy Storage Unit
,”
Energy Rep.
,
9
, pp.
3989
4004
.10.1016/j.egyr.2023.03.037
10.
Zamengo
,
M.
,
Wu
,
S.
,
Yoshida
,
R.
, and
Morikawa
,
J.
,
2023
, “
Multi-Objective Optimization for Assisting the Design of Fixed-Type Packed Bed Reactors for Chemical Heat Storage
,”
Appl. Therm. Eng.
,
218
, p.
119327
.10.1016/j.applthermaleng.2022.119327
11.
Zamengo
,
M.
,
Yoshida
,
K.
, and
Morikawa
,
J.
,
2021
, “
Numerical Evaluation of a Carnot Battery System Comprising a Chemical Heat Storage/Pump and a Brayton Cycle
,”
J. Energy Storage
,
41
, p.
102955
.10.1016/j.est.2021.102955
12.
Khan
,
R. J.
,
Bhuiyan
,
M. Z. H.
, and
Ahmed
,
D. H.
,
2020
, “
Investigation of Heat Transfer of a Building Wall in the Presence of Phase Change Material (PCM)
,”
Energy Built Environ.
,
1
(
2
), pp.
199
206
.10.1016/j.enbenv.2020.01.002
13.
Yin
,
Z.
,
Zheng
,
J.
,
Kim
,
H.
,
Seo
,
Y.
, and
Linga
,
P.
,
2021
, “
Hydrates for Cold Energy Storage and Transport: A Review
,”
Adv. Appl. Energy
,
2
, p.
100022
.10.1016/j.adapen.2021.100022
14.
EnergieSpeicher
,
2024
, “
Waste Heat Used for Production of Precast Concrete
,” accessed Mar. 5, 2024, http://forschung-energiespeicher.info
15.
European Commission
,
2013
, “
Best Available Techniques Reference Document (BREFs)
,” accessed Mar. 5, 2024, https://eippcb.jrc.ec.europa.eu/reference/
16.
Maruoka
,
N.
, and
Akiyama
,
T.
,
2006
, “
Exergy Recovery From Steelmaking Off-Gas by Latent Heat Storage for Methanol Production
,”
Energy
,
31
(
10–11
), pp.
1632
1642
.10.1016/j.energy.2005.05.023
17.
Du
,
K.
,
Calautit
,
J.
,
Wang
,
Z.
,
Wu
,
Y.
, and
Liu
,
H.
,
2018
, “
A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges
,”
Appl. Energy
,
220
, pp.
242
273
.10.1016/j.apenergy.2018.03.005
18.
Rehman
,
T-U.
, and
Ali
,
H. M.
,
2018
, “
Experimental Investigation on Paraffin Wax Integrated With Copper Foam Based Heat Sinks for Electronic Components Thermal Cooling
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
155
162
.10.1016/j.icheatmasstransfer.2018.08.003
19.
Farahani
,
S. D.
,
Farahani
,
A. D.
, and
Hajian
,
E.
,
2021
, “
Effect of PCM and Porous Media/Nanofluid on the Thermal Efficiency of Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105546
.10.1016/j.icheatmasstransfer.2021.105546
20.
Rostami
,
S.
,
Nadooshan
,
A. A.
,
Raisi
,
A.
, and
Bayareh
,
M.
,
2023
, “
Numerical Assessment of the Multi-Phase Nanofluid Flow Inside a Microchannel During the Melting and Solidification of PCM in the Thermal Management of a Heatsink
,”
Eng. Anal. Boundary Elem.
,
148
, pp.
267
278
.10.1016/j.enganabound.2022.12.038
21.
Pawar
,
V. R.
, and
Sobhansarbandi
,
S.
,
2023
, “
Heat Transfer Enhancement of a PCM-Porous Metal Based Heat Pipe Evacuated Tube Solar Collector: An Experimental Study
,”
Sol. Energy
,
251
, pp.
106
118
.10.1016/j.solener.2022.10.054
22.
Li
,
W. Q.
,
Li
,
Y. X.
,
Yang
,
T. H.
,
Zhang
,
T. Y.
, and
Qin
,
F.
,
2023
, “
Experimental Investigation on Passive Cooling, Thermal Storage and Thermoelectric Harvest With Heat Pipe-Assisted PCM-Embedded Metal Foam
,”
Int. J. Heat Mass Transfer
,
201
, p.
123651
.10.1016/j.ijheatmasstransfer.2022.123651
23.
Cui
,
W.
,
Si
,
T.
,
Li
,
X.
,
Li
,
X.
,
Lu
,
L.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Heat Transfer Analysis of Phase Change Material Composited With Metal Foam-Fin Hybrid Structure in Inclination Container by Numerical Simulation and Artificial Neural Network
,”
Energy Rep.
,
8
, pp.
10203
10218
.10.1016/j.egyr.2022.07.178
24.
Ambreen
,
T.
,
Niyas
,
H.
,
Kanti
,
P.
,
Ali
,
H. M.
, and
Park
,
C.-W.
,
2022
, “
Experimental Investigation on the Performance of RT-44HC-Nickel Foam-Based Heat Sinks for Thermal Management of Electronic Gadgets
,”
Int. J. Heat Mass Transfer
,
188
, p.
122591
.10.1016/j.ijheatmasstransfer.2022.122591
25.
Freeman
,
T. B.
,
Foster
,
K. E.
,
Troxler
,
C. J.
,
Irvin
,
C. W.
,
Aday
,
A.
,
Boetcher
,
S. K.
,
Mahvi
,
A.
,
Smith
,
M. K.
, and
Odukomaiya
,
A.
,
2023
, “
Advanced Materials and Additive Manufacturing for Phase Change Thermal Energy Storage and Management: A Review
,”
Adv. Energy Mater.
,
13
(
24
), p.
2204208
.10.1002/aenm.202204208
26.
Rehman
,
T.-U.
, and
Ali
,
H. M.
,
2020
, “
Experimental Study on the Thermal Behavior of RT-35HC Paraffin Within Copper and Iron-Nickel Open Cell Foams: Energy Storage for Thermal Management of Electronics
,”
Int. J. Heat Mass Transfer
,
146
, p.
118852
.10.1016/j.ijheatmasstransfer.2019.118852
27.
Nedjem
,
K.
,
Laouer
,
A.
,
Teggar
,
M.
,
Mezaache
,
E. H.
,
Arıcı
,
M.
, and
Ismail
,
K. A. R.
,
2022
, “
Performance Enhancement of Triplex Tube Latent Heat Storage Using Fins, Metal Foam and Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106437
.10.1016/j.icheatmasstransfer.2022.106437
28.
Xiao
,
X.
,
Jia
,
H.
,
Wen
,
D.
,
Akhlaghi
,
Y. G.
, and
Badiei
,
A.
,
2023
, “
Experimental Investigation of a Latent Heat Thermal Energy Storage Unit Encapsulated With Molten Salt/Metal Foam Composite Seeded With Nanoparticles
,”
Energy Built Environ.
,
4
(
1
), pp.
74
85
.10.1016/j.enbenv.2021.08.003
29.
Shu
,
G.
,
Xiao
,
T.
,
Guo
,
J.
,
Wei
,
P.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Effect of Charging/Discharging Temperatures Upon Melting and Solidification of PCM-Metal Foam Composite in a Heat Storage Tube
,”
Int. J. Heat Mass Transfer
,
201
, p.
123555
.10.1016/j.ijheatmasstransfer.2022.123555
30.
Guo
,
J.
,
Liu
,
Z.
,
Du
,
Z.
,
Yu
,
J.
,
Yang
,
X.
, and
Yan
,
J.
,
2021
, “
Effect of Fin-Metal Foam Structure on Thermal Energy Storage: An Experimental Study
,”
Renewable Energy
,
172
, pp.
57
70
.10.1016/j.renene.2021.03.018
31.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
,
46
(
6
), pp.
847
867
.10.1016/j.enconman.2004.06.010
32.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2015
, “
Numerical Analysis on Thermal Behavior of Solid–Liquid Phase Change Within Copper Foam With Varying Porosity
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1008
1018
.10.1016/j.ijheatmasstransfer.2015.01.088
33.
Zhu
,
F.
,
Zhang
,
C.
, and
Gong
,
X.
,
2017
, “
Numerical Analysis on the Energy Storage Efficiency of Phase Change Material Embedded in Finned Metal Foam With Graded Porosity
,”
Appl. Therm. Eng.
,
123
, pp.
256
265
.10.1016/j.applthermaleng.2017.05.075
34.
Ghahremannezhad
,
A.
,
Xu
,
H.
,
Salimpour
,
M. R.
,
Wang
,
P.
, and
Vafai
,
K.
,
2020
, “
Thermal Performance Analysis of Phase Change Materials (PCMs) Embedded in Gradient Porous Metal Foams
,”
Appl. Therm. Eng.
,
179
, p.
115731
.10.1016/j.applthermaleng.2020.115731
35.
Yang
,
C.
,
Xu
,
Y.
,
Cai
,
X.
, and
Zheng
,
Z.-J.
,
2021
, “
Melting Behavior of the Latent Heat Thermal Energy Storage Unit With Fins and Graded Metal Foam
,”
Appl. Therm. Eng.
,
198
, p.
117462
.10.1016/j.applthermaleng.2021.117462
36.
Huang
,
X.
,
Sun
,
C.
,
Chen
,
Z.
, and
Han
,
Y.
,
2021
, “
Experimental and Numerical Studies on Melting Process of Phase Change Materials (PCMs) Embedded in Open-Cells Metal Foams
,”
Int. J. Therm. Sci.
,
170
, p.
107151
.10.1016/j.ijthermalsci.2021.107151
37.
Zheng
,
Z.-J.
,
Yang
,
C.
,
Xu
,
Y.
, and
Cai
,
X.
,
2021
, “
Effect of Metal Foam With Two-Dimensional Porosity Gradient on Melting Behavior in a Rectangular Cavity
,”
Renewable Energy
,
172
, pp.
802
815
.10.1016/j.renene.2021.03.069
38.
Liu
,
G.
,
Xiao
,
T.
,
Wei
,
P.
,
Meng
,
X.
,
Yang
,
X.
,
Yan
,
J.
, and
He
,
Y.-L.
,
2023
, “
Experimental and Numerical Studies on Melting/Solidification of PCM in a Horizontal Tank Filled With Graded Metal Foam
,”
Sol. Energy Mater. Sol. Cells
,
250
, p.
112092
.10.1016/j.solmat.2022.112092
39.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
40.
Troxler
,
C. J.
,
Freeman
,
T. B.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2023
, “
Experimental and Numerical Investigation of Lauric Acid Melting at Suboptimal Inclines
,”
ASME Open J. Eng.
,
2
, p.
021011
.10.1115/1.4056348
41.
Buonomo
,
B.
,
Celik
,
H.
,
Ercole
,
D.
,
Manca
,
O.
, and
Mobedi
,
M.
,
2019
, “
Numerical Study on Latent Thermal Energy Storage Systems With Aluminum Foam in Local Thermal Equilibrium
,”
Appl. Therm. Eng.
,
159
, p.
113980
.10.1016/j.applthermaleng.2019.113980
42.
Yang
,
X. H.
,
Bai
,
J. X.
,
Yan
,
H. B.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Transp. Porous Media
,
102
(
3
), pp.
403
426
.10.1007/s11242-014-0281-z
43.
Georgiadis
,
J. G.
, and
Catton
,
I.
,
1988
, “
Dispersion in Cellular Thermal Convection in Porous Layers
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp.
1081
1091
.10.1016/0017-9310(88)90096-8
44.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
45.
Xiao
,
T.
,
Liu
,
G.
,
Guo
,
J.
,
Shu
,
G.
,
Lu
,
L.
, and
Yang
,
X.
,
2022
, “
Effect of Metal Foam on Improving Solid–Liquid Phase Change in a Multi-Channel Thermal Storage Tank
,”
Sustainable Energy Technol. Assess.
,
53
, p.
102533
.10.1016/j.seta.2022.102533
46.
Ait-Amir
,
B.
,
Pougnet
,
P.
, and
El Hami
,
A.
,
2020
, “
6-meta-Model Development
,”
Embedded Mechatronic Systems 2
, 2nd ed.,
A.
El Hami
, and
P.
Pougnet
, eds.,
ISTE
, pp.
157
187
.10.1016/B978-1-78548-014-0.50006-2
You do not currently have access to this content.