Abstract

Due to their high performance and low-cost demands, internally treated tube heat exchanger surfaces are one of the passive heat transfer enhancements that have caught the industry's attention. At bulk temperatures of 30 °C, an experiment for the insertion of 1 mm and 0.5 mm wire coils with a constant pitch length of 8 mm was carried out in this study. The results on the improvement of heat transfer, including the velocity profile, Nusselt number (6000 < Re < 20,000), friction factor, and thermal enhancement efficiency, were significant. Based on a lower surface temperature recorded beyond the uncertainty value, the results demonstrated an improvement in heat transfer for smaller diameter of wire coil inserts. It's interesting that this improvement is concentrated at low Reynolds numbers, indicating that there may be a point at which an increase in wire thickness does not necessarily result in an equivalent improvement in heat transfer. For both wire thicknesses, a Nusselt number increase of up to five times was visible. The friction factor penalty, however, varies depending on the wire thickness, with a higher magnitude (3.2-fold increase) obtained for 1 mm as opposed to a 1.8-fold increase for the lower counterpart. This distinction results in the 0.5 mm coil insert gaining better overall performance with an average of 2.2 for the thermal performance ratio, further solidifying the advantage of this technique for enhancing heat transfer in conduits. The diameter of the wire coil is found to be a key factor in improving heat transfer and convection on the boundary layer surface.

References

1.
Al-Gburi
,
H.
,
Mohammed
,
A. A.
, and
Al-Abbas
,
A. H.
,
2023
, “
Experimental Study of the Thermal Performance of Corrugated Helically Coiled Tube-in-Tube Heat Exchanger
,”
Front. Heat Mass Transfer
,
20
(
17
), pp.
1
7
.10.5098/hmt.20.17
2.
Aly
,
W. I. A.
,
Elbalshouny
,
M. A.
,
Abd El-Hameed
,
H. M.
, and
Fatouh
,
M.
,
2017
, “
Thermal Performance Evaluation of a Helically-Micro-Grooved Heat Pipe Working With Water and Aqueous Al2O3 Nanofluid at Different Inclination Angle and Filling Ratio
,”
Appl. Therm. Eng.
,
110
, pp.
1294
1304
.10.1016/j.applthermaleng.2016.08.130
3.
Omur
,
C.
,
Uygur
,
A. B.
, and
Horuz
,
I.
,
2017
, “
The Effect of Manufacturing Limitations on Groove Design and Its Implementation to an Algorithm for Determining Heat Transport Capability of Heat Pipes
,”
J. Therm. Sci. Technol.
,
37
(
1
), pp.
159
170
.https://dergipark.org.tr/en/download/article-file/400716
4.
Muhamad
,
M. R. B.
,
Ibrahim
,
F. A.
,
Mohd Zubir
,
M. N.
,
Omar
,
M.
,
Siri
,
Z.
,
Rony
,
M. M. H. E.
, and
Ahmed
,
M. M. A.
,
2022
, “
Pipe Internal Grooving Using Closed Magnetic Field System: A Novel Method
,”
Mat. Sci. Eng. Technol.
,
54
(
9
), pp.
1082
1091
.10.1002/mawe.202100388
5.
Léal
,
L.
,
Miscevic
,
M.
,
Lavieille
,
P.
,
Amokrane
,
M.
,
Pigache
,
F.
,
Topin
,
F.
,
Nogarède
,
B.
, and
Tadrist
,
L.
, June
2013
, “
An Overview of Heat Transfer Enhancement Methods and New Perspectives: Focus on Active Methods Using Electroactive Materials
,”
Int. J. Heat Mass Transfer
,
61
(
1
), pp.
505
524
.10.1016/j.ijheatmasstransfer.2013.01.083
6.
Akhavan-Behabadi
,
M. A.
,
Kumar
,
R.
,
Salimpour
,
M. R.
, and
Azimi
,
R.
,
2010
, “
Pressure Drop and Heat Transfer Augmentation Due to Coiled Wire Inserts During Laminar Flow of Oil Inside a Horizontal Tube
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
373
379
.10.1016/j.ijthermalsci.2009.06.004
7.
Matani
,
A. G.
, and
Dahake
,
S. A.
,
2013
, “
Experimental Study on Heat Transfer Enhancement in a Tube Using Counter/Co-Swirl Generation
,”
Int. J. Appl. Innovation Eng. Manage.
,
2
(
3
), pp.
100
105
.
8.
Liu
,
S.
, and
Sakr
,
M.
,
2013
, “
A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
64
81
.10.1016/j.rser.2012.11.021
9.
Sonawane
,
T.
,
Patil
,
P.
,
Chavhan
,
A.
, and
Dusane
,
B. M.
,
2016
, “
A Review on Heat Transfer Enhancement by Passive Methods
,”
Int. Res. J. Eng. Technol.
,
3
(
9
), pp.
1567
1574
.https://www.irjet.net/archives/V3/i9/IRJETV3I9292.pdf
10.
Jafari Nasr
,
M. R.
,
Habibi Khalaj
,
A.
, and
Mozaffari
,
S. H.
,
2010
, “
Modeling of Heat Transfer Enhancement by Wire Coil Inserts Using Artificial Neural Network Analysis
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
143
151
.10.1016/j.applthermaleng.2009.07.014
11.
Smith
,
E.-A.
,
Koolnapadol
,
N.
, and
Promvonge
,
P.
,
2012
, “
Heat Transfer Behavior in a Square Duct With Tandem Wire Coil Element Insert
,”
Chin. J. Chem. Eng.
,
20
(
5
), pp.
863
869
.10.1016/S1004-9541(12)60411-X
12.
García
,
A.
,
Martin
,
R. H.
, and
Pérez-García
,
J.
,
2013
, “
Experimental Study of Heat Transfer Enhancement in a Flat-Plate Solar Water Collector With Wire-Coil Inserts
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
461
468
.10.1016/j.applthermaleng.2013.07.048
13.
Gunes
,
S.
,
Ozceyhan
,
V.
, and
Buyukalaca
,
O.
,
2010
, “
The Experimental Investigation of Heat Transfer and Pressure Drop in a Tube With Coiled Wire Inserts Placed Separately From the Tube Wall
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1719
1725
.10.1016/j.applthermaleng.2010.04.001
14.
Naphon
,
P.
,
2006
, “
Effect of Coil-Wire Insert on Heat Transfer Enhancement and Pressure Drop of the Horizontal Concentric Tubes
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
753
763
.10.1016/j.icheatmasstransfer.2006.01.020
15.
Zohir
,
A. E.
,
Habib
,
M. A.
, and
Nemitallah
,
M. A.
,
2015
, “
Heat Transfer Characteristics in a Double Pipe Heat Exchanger Equipped With Coiled Circular Wires
,”
Exp. Heat Transfer
,
28
(
6
), pp.
531
545
.10.1080/08916152.2014.915271
16.
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2018
, “
Experimental Investigation on Heat Transfer Enhancement in a Circular Tube With Equilateral Triangle Cross Sectioned Coiled-Wire Inserts
,”
Appl. Therm. Eng.
,
131
, pp.
686
695
.10.1016/j.applthermaleng.2017.12.051
17.
Feng
,
Z.
,
Luo
,
X.
,
Guo
,
F.
,
Li
,
H.
, and
Zhang
,
J.
,
2017
, “
Numerical Investigation on Laminar Flow and Heat Transfer in Rectangular Microchannel Heat Sink With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
116
, pp.
597
609
.10.1016/j.applthermaleng.2017.01.091
18.
Chompookham
,
T.
,
Chingtuaythong
,
W.
, and
Chokphoemphun
,
S.
,
2022
, “
Influence of a Novel Serrated Wire Coil Insert on Thermal Characteristics and Air Flow Behavior in a Tubular Heat Exchanger
,”
Int. J. Therm. Sci.
,
171
, p.
107184
.10.1016/j.ijthermalsci.2021.107184
19.
Promvonge
,
P.
,
2008
, “
Thermal Performance in Circular Tube Fitted With Coiled Square Wires
,”
Energy Convers. Manage.
,
49
(
5
), pp.
980
987
.10.1016/j.enconman.2007.10.005
20.
Chang
,
S. W.
,
G
,
J. Y.
, and
Shih
,
H. L.
,
2015
, “
Thermal Performances of Turbulent Tubular Flows Enhanced by Ribbed and Grooved Wire Coils
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1109
1124
.10.1016/j.ijheatmasstransfer.2015.07.070
21.
Keklikcioglu
,
O.
,
Dagdevir
,
T.
, and
Ozceyhan
,
V.
,
2020
, “
Second Law Analysis of a Mixture of Ethylene Glycol/Water Flow in Modified Heat Exchanger Tube by Passive Heat Transfer Enhancement Technique
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1307
1320
.10.1007/s10973-020-09445-w
22.
Esparza
,
D. M.
, and
Sanmiguel Rojas
,
E.
,
2011
, “
Numerical Simulations of the Laminar Flow in Pipes With Wire Coil Inserts
,”
Comput. Fluids
,
44
, pp.
169
177
.10.1016/j.compfluid.2010.12.034
23.
Azmi
,
W. H.
,
Abdul Hamid
,
K.
,
Ramadhan
,
A. I.
, and
Shaiful
,
A. I. M.
,
2021
, “
Thermal Hydraulic Performance for Hybrid Composition Ratio of TiO2–SiO2 Nanofluids in a Tube With Wire Coil Inserts
,”
Case Stud. Therm. Eng.
,
25
, p.
100899
.10.1016/j.csite.2021.100899
24.
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2016
, “
Experimental Investigation on Heat Transfer Enhancement of a Tube With Coiled-Wire Inserts Installed With a Separation From the Tube Wall
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
88
94
.10.1016/j.icheatmasstransfer.2016.08.024
25.
Syam Sundar
,
L.
,
Bhramara
,
P.
,
Ravi Kumar
,
N. T.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2017
, “
Experimental Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4 Nanofluid Flow in a Horizontal Plain Tube With Return Bend and Wire Coil Inserts
,”
Int. J. Heat Mass Transfer
,
109
, pp.
440
453
.10.1016/j.ijheatmasstransfer.2017.02.022
26.
Dang
,
W.
, and
Wang
,
L.-B.
,
2021
, “
Convective Heat Transfer Enhancement Mechanisms in Circular Tube Inserted With a Type of Twined Coil
,”
Int. J. Heat Mass Transfer
,
169
, p.
120960
.10.1016/j.ijheatmasstransfer.2021.120960
27.
Kasturi
,
M. L.
,
Junaid
,
M.
,
Awate
,
Y. S.
, and
Acharya
,
A. R.
,
2017
, “
Effect of Wire Coil Turbulators on Pressure Drop and Heat Transfer Augmentation in a Circular Tube
,” International Conference on Innovations in Information Embedded and Communication Systems (
ICIIECS
), Coimbatore, India, Mar. 17–18, pp.
1
6
.10.1109/ICIIECS.2017.8276115
28.
Padmanabhan
,
S.
,
Yuvatejeswar Reddy
,
O.
,
Venkata Ajith Kumar Yadav
,
K.
,
Bupesh Raja
,
V. K.
, and
Palanikumar
,
K.
,
2021
, “
Heat Transfer Analysis of Double Tube Heat Exchanger With Helical Inserts
,”
Mater. Today: Proc.
,
46
, pp.
3588
3595
.10.1016/j.matpr.2021.01.337
29.
Zidan
,
E.
,
Halim
,
M. A.
,
Omara
,
M. A.
, and
Badawy
,
A. E.
,
2018
, “
Experimental Investigation of Heat Transfer and Pressure Drop Inside Elliptic Tube With Inserted Helical Coils
,”
Mansoura Eng. J. (MEJ)
,
43
(
3
), pp.
24
33
.10.21608/bfemu.2020.95738
30.
Yu
,
C.
,
Zhang
,
H.
,
Wang
,
Y.
,
Zeng
,
M.
, and
Gao
,
B.
,
2020
, “
Numerical Study on Turbulent Heat Transfer Performance of Twisted Oval Tube With Different Cross Sectioned Wire Coil
,”
Case Stud. Therm. Eng.
,
22
, p.
100759
.10.1016/j.csite.2020.100759
31.
Göksu
,
T. T.
, and
Yilmaz
,
F.
,
2021
, “
Numerical Comparison Study on Heat Transfer Enhancement of Different Cross Section Wire Coils Insert With Varying Pitches in a Duct
,”
J. Therm. Eng.
,
7
(
7
), pp.
1683
1693
.10.18186/thermal.1025930
32.
Kadam
,
S. V.
,
Patil
,
S. S.
, and
Mohite
,
S. S.
,
2022
, “
Numerical Analysis of Wire Coil Inserted Corrugated Tube for Laminar Flow
,”
Mater. Today: Proc.
,
62
, pp.
6837
6843
.10.1016/j.matpr.2022.05.021
33.
Garcia
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2007
, “
Enhancement of Laminar and transitional flow heat Transfer in Tubes by Means of Wire Coil Inserts
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3176
3189
.10.1016/j.ijheatmasstransfer.2007.01.015
34.
García
,
A.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2005
, “
Experimental Study of Heat Transfer Enhancement With Wire Coil Inserts in Laminar-Transition-Turbulent Regimes at Different Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4640
4651
.10.1016/j.ijheatmasstransfer.2005.04.024
35.
Abdul Hamid
,
K.
,
Azmi
,
W. H.
,
Mamat
,
R.
, and
Sharma
,
K. V.
,
2019
, “
Heat Transfer Performance of TiO2–SiO2 Nanofluids in a Tube With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
152
, pp.
275
286
.10.1016/j.applthermaleng.2019.02.083
36.
Reddy
,
M. C. S.
, and
Rao
,
V. V.
,
2014
, “
Experimental Investigation of Heat Transfer Coefficient and Friction Factor of Ethylene Glycol Water Based TiO2 Nanofluid in Double Pipe Heat Exchanger With and Without Helical Coil Inserts
,”
Int. Commun. Heat Mass Transfer
,
50
, pp.
68
76
.10.1016/j.icheatmasstransfer.2013.11.002
37.
Ali
,
R. K.
,
Sharafeldeen
,
M. A.
,
Berbish
,
N. S.
, and
Moawed
,
M. A.
,
2015
, “
Convective Heat Transfer Enhancement Inside Tubes Using Inserted Helical Coils
,”
Therm. Eng.
,
63
(
1
), pp.
42
50
.10.1134/S0040601516010018
38.
Zubir
,
M. N. M.
,
Muhamad
,
M. R.
,
Amiri
,
A.
,
Badarudin
,
A.
,
Kazi
,
S. N.
,
Oon
,
C. S.
,
Abdullah
,
H. T.
,
Gharehkhani
,
S.
, and
Yarmand
,
H.
,
2016
, “
Heat Transfer Performance of Closed Conduit Turbulent Flow: Constant Mean Velocity and Temperature Do Matter!
,”
J. Taiwan Inst. Chem. Eng.
,
64
, pp.
285
298
.10.1016/j.jtice.2016.04.013
39.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
4
), p.
042412
.10.1115/1.2818775
40.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
.
41.
Blasius
,
H.
,
1913
, “
Das Aehnlichkeitsgesetz Bei Reibungsvorgängen in Flüssigkeiten
,”
Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens
,
Springer
, Berlin, pp.
1
41
.
42.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
43.
Blasius
,
H.
,
1913
,
Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens
, Vol.
131
, Springer, Berlin, pp.
1
41
.
44.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
367
.
45.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
46.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
47.
Taylor
,
J. R.
, and
Thompson
,
W.
,
1998
, “
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,”
Meas. Sci. Technol
,
6
(
1015
), p.
022
.10.1063/1.882103
48.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Chandra Bose
,
A.
,
2010
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Laminar Flow With Wire Coil Inserts
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
122
130
.10.1016/j.expthermflusci.2009.10.001
49.
Dang
,
C.
,
Haraguchi
,
N.
, and
Hihara
,
E.
,
2010
, “
Flow Boiling Heat Transfer of Carbon Dioxide Inside a Small-Sized Microfin Tube
,”
Int. J. Refrig.
,
33
(
4
), pp.
655
663
.10.1016/j.ijrefrig.2010.01.003
50.
Inoue
,
N.
, and
Ichinose
,
J.
,
2012
, “
Single-Phase Heat Transfer and Pressure Drop Inside Internally Helical-Grooved Horizontal Small-Diameter Tubes
,”
Int. J. Air-Cond. Refrig.
,
20
(
04
), p.
1250022
.10.1142/S2010132512500228
51.
Selvaraj
,
P.
,
Sarangan
,
J.
, and
Suresh
,
S.
,
2013
, “
Computational Fluid Dynamics Analysis on Heat Transfer and Friction Factor Characteristics of a Turbulent Flow for Internally Grooved Tubes
,”
Therm. Sci.
,
17
(
4
), pp.
1125
1137
.10.2298/TSCI110404010S
52.
Zhang
,
X.
,
Zhang
,
J.
,
Ji
,
H.
, and
Zhao
,
D.
,
2015
, “
Heat Transfer Enhancement and Pressure Drop Performance for R417A Flow Boiling in Internally Grooved Tubes
,”
Energy
,
86
, pp.
446
454
.10.1016/j.energy.2015.04.054
You do not currently have access to this content.