Abstract

Large eddy simulation was performed to investigate heat transfer performance of a pulsating flow over teardrop-shaped dimples. A total of six geometries of dimpled surfaces were examined for dimple arrangements of in-line/staggered/original and dimple inclination angle of 0–60 deg. Pulsating flows were generated by sinusoidally varying the volume-averaged velocity. The pulsation frequency and amplitude were changed for the Strouhal number of 0–0.60 and the root-mean-square velocity amplitude normalized by the bulk flow velocity of 0–0.14. The results showed that the surface-averaged Nusselt number and friction factor were larger for the pulsating flow case than for the steady flow case. The surface-averaged Nusselt number ratio and the friction factor increased with the Strouhal number up to the Strouhal number of 0.30. For the Strouhal number larger than 0.30, they decreased with the Strouhal number or stayed almost constant. Consequently, the heat transfer efficiency index increased with the Strouhal number. The increase in the local Nusselt number ratio due to the flow pulsation was observed at the leading-edge region of the dimples. The results of the streamlines near the dimple showed that the swirling separation bubble was located closer to the leading-edge region due to the pulsation, which resulted in the increase of the absolute values of the turbulent heat flux and the local Nusselt number ratio.

References

1.
Masci
,
R.
, and
Sciubba
,
E.
,
2018
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
.10.1115/1.4038462
2.
Pollock
,
T. M.
,
2016
, “
Alloy Design for Aircraft Engines
,”
Nat. Mater.
,
15
(
8
), pp.
809
815
.10.1038/nmat4709
3.
Han
,
J.-C.
,
Sandip
,
D.
, and
Srinath
,
E.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
4.
Hauser
,
A.
, and
Zuxier
,
T.
,
1974
, “
Pin-Fin Cooling System
,” U.S. Patent 3,800,864, issued Apr. 2.
5.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME. J. Turbomach.
,
110
(
1
), pp.
94
103
.10.1115/1.3262173
6.
Abuaf
,
N.
, and
Kercher
,
D. M.
,
1992
, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,” ASME Paper No. 92-GT-187.10.1115/92-GT-187
7.
Murata
,
A.
, and
Mochizuki
,
S.
,
2003
, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3119
3133
.10.1016/S0017-9310(03)00080-2
8.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME. J. Turbomach.
,
127
(
3
), pp.
471
478
.10.1115/1.1860381
9.
Shevchuk
,
I. V.
,
2016
,
Modelling of Convective Heat and Mass Transfer in Rotating Flows
,
Springer
, Berlin.
10.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2000
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.10.1115/1.1333694
11.
Murata
,
A.
,
Mochizuki
,
S.
,
Nakamata
,
C.
, and
Okita
,
Y.
,
2008
, “
Large Eddy Simulation of Turbulent Heat Transfer in Stationary Channels With Dimples, Protrusions, and Ribs
,”
Int. J. Transp. Phenom.
,
10
(
4
), pp.
323
336
.https://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-10-number-4-2008/ijtp-10-4-p-323-336/
12.
Acharya
,
S.
, and
Zhou
,
F.
,
2012
, “
Experimental and Computational Study of Heat/Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,”
ASME J. Turbomach.
,
134
(
6
), p.
061028
.10.1115/1.4006315
13.
Leontiev
,
A. I.
,
Kiselev
,
N. A.
,
Vinogradov
,
Y. A.
,
Strongin
,
M. M.
,
Zditovets
,
A. G.
, and
Burtsev
,
S. A.
,
2017
, “
Experimental Investigation of Heat Transfer and Drag on Surfaces Coated With Dimples of Different Shape
,”
Int. J. Therm. Sci.
,
118
, pp.
152
167
.10.1016/j.ijthermalsci.2017.04.027
14.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.10.1115/97-GT-437
15.
Rao
,
Y.
,
Li
,
B.
, and
Feng
,
Y.
,
2015
, “
Heat Transfer of Turbulent Flow Over Surfaces With Spherical Dimples and Teardrop Dimples
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
201
209
.10.1016/j.expthermflusci.2014.10.030
16.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface With Teardrop-Shaped Dimples
,”
Proceedings of Asian Congress On Gas Turbines
, Tokyo, Japan, Aug. 24–26, Paper No. ACGT 2009-TS41, pp.
1
4
.
17.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2012
, “
Compensation of Three-Dimensional Heat Conduction Inside Wall in Heat Transfer Measurement of Dimpled Surface by Using Transient Technique
,”
J. Enhanc. Heat Transfer
,
19
(
4
), pp.
331
341
.10.1615/JEnhHeatTransf.2012003016
18.
Jin
,
D. X.
,
Lee
,
Y. P.
, and
Lee
,
D.-Y.
,
2007
, “
Effects of the Pulsating Flow Agitation on the Heat Transfer in a Triangular Grooved Channel
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3062
3071
.10.1016/j.ijheatmasstransfer.2006.12.001
19.
Davletshin
,
I. A.
,
Mikheev
,
A. N.
,
Mikheev
,
N. I.
, and
Shakirov
,
R. R.
,
2020
, “
Heat Transfer and Structure of Pulsating Flow Behind a Rib
,”
Int. J. Heat Mass Transfer
,
160
, p.
120173
.10.1016/j.ijheatmasstransfer.2020.120173
20.
Yang
,
B.
,
Gao
,
T.
,
Gong
,
J.
, and
Li
,
J.
,
2018
, “
Numerical Investigation on Flow and Heat Transfer of Pulsating Flow in Various Ribbed Channels
,”
Appl. Therm. Eng.
,
145
, pp.
576
589
.10.1016/j.applthermaleng.2018.09.041
21.
Kobayashi
,
S.
,
Inokuma
,
K.
,
Murata
,
A.
, and
Iwamoto
,
K.
,
2023
, “
Effects of Flow Pulsation and Surface Geometry on Heat Transfer Performance in a Channel With Teardrop-Shaped Dimples Investigated by Transient Technique
,”
ASME J. Heat Mass Transfer
, epub.
22.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2013
,
Fluid Mechanics Fundamentals and Applications
, 3rd ed.,
McGraw-Hill Inc.
,
New York
.
23.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
(
-1
), pp.
353
385
.10.1017/S0022112096007379
24.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill Inc
,
NJ
, p.
316
.
25.
Dean
,
R. B.
,
1978
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
215
223
.10.1115/1.3448633
26.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced-Convection Heat-Transfer in Helically Rib-Roughened Tubes
,”
Int, J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.10.1016/0017-9310(80)90177-5
27.
Murata
,
A.
,
Yano
,
K.
,
Hanai
,
M.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2017
, “
Arrangement Effects of Inclined Teardrop-Shaped Dimples on Film Cooling Performance of Dimpled Cutback Surface at Airfoil Trailing Edge
,”
Int. J. Heat Mass Transfer
,
107
, pp.
761
770
.10.1016/j.ijheatmasstransfer.2016.11.081
You do not currently have access to this content.