Abstract

The heat source layout optimization (HSLO) is typically used to facilitate superior heat dissipation in thermal management. However, HSLO is characterized by numerous degrees-of-freedom and complex interrelations between components. Conventional optimization methodologies often exhibit limitations such as high computational demands and diminished efficiency, particularly for complex scenarios. This study demonstrates the application of deep learning surrogate models based on the feedforward neural network (FNN) to optimize heat source layouts. These models provide rapid and precise evaluations, with diminished computational loads and enhanced efficiency of HSLO. The proposed approach integrates coarse and fine search modules to traverse the layout space and pinpoint optimal configurations. Parametric examinations are taken to explore the impact of refinement grades and conductive ratios, which dominate the optimization problem. The pattern changes of the conductive channel have been presented. Moreover, the critical conductive ratio has been found, below which the conductive material can no longer contribute to heat dissipation. The outcomes elucidate the fundamental mechanisms of HSLO, providing valuable insights for thermal management strategies.

References

1.
Mathew
,
J.
, and
Krishnan
,
S.
,
2022
, “
A Review on Transient Thermal Management of Electronic Devices
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
010801
.10.1115/1.4050002
2.
Xi
,
W.
,
Lee
,
Y. J.
,
Yu
,
S.
,
Chen
,
Z.
,
Shiomi
,
J.
,
Kim
,
S. K.
, and
Hu
,
R.
,
2023
, “
Ultrahigh-Efficient Material Informatics Inverse Design of Thermal Metamaterials for Visible-Infrared-Compatible Camouflage
,”
Nat. Commun.
,
14
(
1
), pp.
1
10
.10.1038/s41467-023-40350-6
3.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
E-Prime - Adv. Electr. Eng. Electron. Energy
,
1
, p.
100009
.10.1016/j.prime.2021.100009
4.
Schelling
,
P. K.
,
Shi
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Managing Heat for Electronics
,”
Mater. Today
,
8
(
6
), pp.
30
35
.10.1016/S1369-7021(05)70935-4
5.
Hu
,
R.
,
Xi
,
W.
,
Liu
,
Y.
,
Tang
,
K.
,
Song
,
J.
,
Luo
,
X.
,
Wu
,
J.
, and
Qiu
,
C.
,
2021
, “
Thermal Camouflaging Metamaterials
,”
Mater. Today
,
45
, pp.
120
141
.10.1016/j.mattod.2020.11.013
6.
Bejan
,
A.
, and
Lorente
,
S.
,
2013
, “
Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society
,”
J. Appl. Phys.
,
113
, p.
151301
.10.1063/1.4798429
7.
Wang
,
Y.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2021
, “
Integrated Design Optimization of Structural Topology and Heat Source Layout
,”
Int. J. Heat Mass Transfer
,
169
, p.
120943
.10.1016/j.ijheatmasstransfer.2021.120943
8.
Yang
,
D.
,
Yao
,
Q.
,
Jia
,
M.
,
Wang
,
J.
,
Zhang
,
L.
,
Xu
,
Y.
, and
Qu
,
X.
,
2021
, “
Application Analysis of Efficient Heat Dissipation of Electronic Equipment Based on Flexible Nanocomposites
,”
Energy Built Environ.
,
2
(
2
), pp.
157
166
.10.1016/j.enbenv.2020.07.008
9.
Aslan
,
Y.
,
Puskely
,
J.
, and
Yarovoy
,
A.
,
2018
, “
Heat Source Layout Optimization for Two-Dimensional Heat Conduction Using Iterative Reweighted L1-Norm Convex Minimization
,”
Int. J. Heat Mass Transfer
,
122
, pp.
432
441
.10.1016/j.ijheatmasstransfer.2018.02.001
10.
Chen
,
X.
,
Chen
,
X.
,
Zhou
,
W.
,
Zhang
,
J.
, and
Yao
,
W.
,
2020
, “
The Heat Source Layout Optimization Using Deep Learning Surrogate Modeling
,”
Struct. Multidiscip. Optim.
,
62
(
6
), pp.
3127
3148
.10.1007/s00158-020-02659-4
11.
Sun
,
J.
,
Zheng
,
X.
,
Yao
,
W.
,
Zhang
,
X.
,
Zhou
,
W.
, and
Chen
,
X.
,
2023
, “
Heat Source Layout Optimization Using Automatic Deep Learning Surrogate and Multimodal Neighborhood Search Algorithm
,”
Ann. Oper. Res.
, pp.
1
27
.10.1007/s10479-023-05262-0
12.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manag.
,
182
, pp.
262
281
.10.1016/j.enconman.2018.12.051
13.
Zhang
,
Y.
,
Ren
,
Y.
,
Guo
,
H.
, and
Bai
,
S.
,
2019
, “
Enhanced Thermal Properties of PDMS Composites Containing Vertically Aligned Graphene Tubes
,”
Appl. Therm. Eng.
,
150
, pp.
840
848
.10.1016/j.applthermaleng.2019.01.029
14.
Hajmohammadi
,
M. R.
,
Lorenzini
,
G.
,
Joneydi Shariatzadeh
,
O.
, and
Biserni
,
C.
,
2015
, “
Evolution in the Design of V-Shaped Highly Conductive Pathways Embedded in a Heat-Generating Piece
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
, pp.
1
7
.10.1115/1.4029847
15.
Zhu
,
Z.
,
Wang
,
Z.
,
Liu
,
T.
,
Luo
,
X.
,
Qiu
,
C.
, and
Hu
,
R.
,
2023
, “
Field-Coupling Topology Design of General Transformation Multiphysics Metamaterials With Different Functions and Arbitrary Shapes
,”
Cell Rep. Phys. Sci.
,
4
(
8
), p.
101540
.10.1016/j.xcrp.2023.101540
16.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of X-Shaped Conductive Pathways for Cooling a Heat-Generating Body
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
513
520
.10.1016/j.ijheatmasstransfer.2012.11.040
17.
da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Wall With Natural Convection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
203
214
.10.1016/j.ijheatmasstransfer.2003.07.007
18.
Chen
,
K.
,
Xing
,
J.
,
Wang
,
S.
, and
Song
,
M.
,
2017
, “
Heat Source Layout Optimization in Two-Dimensional Heat Conduction Using Simulated Annealing Method
,”
Int. J. Heat Mass Transfer
,
108
, pp.
210
219
.10.1016/j.ijheatmasstransfer.2016.12.007
19.
Liu
,
Z.
,
Li
,
H.
, and
Cao
,
B.
,
2022
, “
Topology Optimization of Heat Source Distribution for Volume-to-Point Heat Conduction
,”
Int. Commun. Heat Mass Transfer
,
138
, p.
106304
.10.1016/j.icheatmasstransfer.2022.106304
20.
Chen
,
K.
,
Wang
,
S.
, and
Song
,
M.
,
2016
, “
Temperature-Gradient-Aware Bionic Optimization Method for Heat Source Distribution in Heat Conduction
,”
Int. J. Heat Mass Transfer
,
100
, pp.
737
746
.10.1016/j.ijheatmasstransfer.2016.05.011
21.
Xu
,
X.
,
Liang
,
X.
, and
Ren
,
J.
,
2007
, “
Optimization of Heat Conduction Using Combinatorial Optimization Algorithms
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1675
1682
.10.1016/j.ijheatmasstransfer.2006.10.037
22.
Afzal
,
A.
,
Buradi
,
A.
,
Jilte
,
R.
,
Shaik
,
S.
,
Kaladgi
,
A. R.
,
Arıcı
,
M.
,
Lee
,
C. T.
, and
Nižetić
,
S.
,
2023
, “
Optimizing the Thermal Performance of Solar Energy Devices Using Meta-Heuristic Algorithms: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
173
, p.
112903
.10.1016/j.rser.2022.112903
23.
Nguyen
,
A. T.
,
Reiter
,
S.
, and
Rigo
,
P.
,
2014
, “
A Review on Simulation-Based Optimization Methods Applied to Building Performance Analysis
,”
Appl. Energy
,
113
, pp.
1043
1058
.10.1016/j.apenergy.2013.08.061
24.
Lian
,
B.
,
Yan
,
H.
, and
Wang
,
J.
,
2022
, “
Performance Analysis of Three Heuristic Algorithms for Airfoil Design Optimization
,”
Int. J. Green Energy
,
19
(
4
), pp.
349
364
.10.1080/15435075.2021.1946813
25.
Li
,
X.
,
Walch
,
A.
,
Yilmaz
,
S.
,
Patel
,
M.
, and
Chambers
,
J.
,
2022
, “
Optimal Spatial Resource Allocation in Networks: Application to District Heating and Cooling
,”
Comput. Ind. Eng.
,
171
, p.
108448
.10.1016/j.cie.2022.108448
26.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2008
, “
Model Reduction for Large-Scale Systems With High-Dimensional Parametric Input Space
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
3270
3288
.10.1137/070694855
27.
Chen
,
X.
,
Zhao
,
X.
,
Gong
,
Z.
,
Zhang
,
J.
,
Zhou
,
W.
,
Chen
,
X.
, and
Yao
,
W.
,
2021
, “
A Deep Neural Network Surrogate Modeling Benchmark for Temperature Field Prediction of Heat Source Layout
,”
Sci. China Phys., Mech. Astron.
,
64
, p.
1
.10.1007/s11433-021-1755-6
28.
Wei
,
H.
,
Bao
,
H.
, and
Ruan
,
X.
,
2020
, “
Machine Learning Prediction of Thermal Transport in Porous Media With Physics-Based Descriptors
,”
Int. J. Heat Mass Transfer
,
160
, p.
120176
.10.1016/j.ijheatmasstransfer.2020.120176
29.
Zhao
,
X.
,
Gong
,
Z.
,
Zhang
,
J.
,
Yao
,
W.
, and
Chen
,
X.
,
2021
, “
A Surrogate Model With Data Augmentation and Deep Transfer Learning for Temperature Field Prediction of Heat Source Layout
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
2287
2306
.10.1007/s00158-021-02983-3
30.
Wang
,
Z.
,
Zhu
,
Z.
,
Liu
,
T.
, and
Hu
,
R.
,
2022
, “
Inverse Design of Thermal Metamaterials With Holey Engineering Strategy
,”
J. Appl. Phys.
,
132
, p.
145102
.10.1063/5.0108743
31.
Gu
,
G. X.
,
Chen
,
C. T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horiz.
,
5
(
5
), pp.
939
945
.10.1039/C8MH00653A
32.
Tang
,
M.
,
Liu
,
Y.
, and
Durlofsky
,
L. J.
,
2020
, “
A Deep-Learning-Based Surrogate Model for Data Assimilation in Dynamic Subsurface Flow Problems
,”
J. Comput. Phys.
,
413
, p.
109456
.10.1016/j.jcp.2020.109456
33.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.10.1016/j.jcp.2018.08.036
34.
Hu
,
R.
,
Iwamoto
,
S.
,
Feng
,
L.
,
Ju
,
S.
,
Hu
,
S.
,
Ohnishi
,
M.
,
Nagai
,
N.
,
Hirakawa
,
K.
, and
Shiomi
,
J.
,
2020
, “
Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
,”
Phys. Rev. X
,
10
(
2
), p.
21050
.10.1103/PhysRevX.10.021050
35.
Qian
,
C.
,
Tan
,
R. K.
, and
Ye
,
W.
,
2022
, “
An Adaptive Artificial Neural Network-Based Generative Design Method for Layout Designs
,”
Int. J. Heat Mass Transfer
,
184
, p.
122313
.10.1016/j.ijheatmasstransfer.2021.122313
36.
Pestourie
,
R.
,
Mroueh
,
Y.
,
Nguyen
,
T. V.
,
Das
,
P.
, and
Johnson
,
S. G.
,
2020
, “
Active Learning of Deep Surrogates for PDEs: Application to Metasurface Design
,”
Npj Comput. Mater.
,
6
, p.
164
.10.1038/s41524-020-00431-2
37.
Masood
,
Z.
,
Khan
,
S.
, and
Qian
,
L.
,
2021
, “
Machine Learning-Based Surrogate Model for Accelerating Simulation-Driven Optimisation of Hydropower Kaplan Turbine
,”
Renewable Energy
,
173
, pp.
827
848
.10.1016/j.renene.2021.04.005
38.
Min
,
A. T. W.
,
Sagarna
,
R.
,
Gupta
,
A.
,
Ong
,
Y.
, and
Goh
,
C. K.
,
2017
, “
Knowledge Transfer Through Machine Learning in Aircraft Design
,”
IEEE Comput. Intell. Mag.
,
12
(
4
), pp.
48
60
.10.1109/MCI.2017.2742781
39.
Xu
,
F.
,
Mo
,
L.
,
Chen
,
H.
, and
Zhu
,
J.
,
2021
, “
Genetic Algorithm to Optimize the Design of High Temperature Protective Clothing Based on BP Neural Network
,”
Front. Phys.
,
9
, pp.
1
6
.10.3389/fphy.2021.600564
40.
Liu
,
C.
,
Ding
,
W.
,
Li
,
Z.
, and
Yang
,
C.
,
2017
, “
Prediction of High-Speed Grinding Temperature of Titanium Matrix Composites Using BP Neural Network Based on PSO Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2277
2285
.10.1007/s00170-016-9267-z
41.
Yin
,
F.
,
Mao
,
H.
, and
Hua
,
L.
,
2011
, “
A Hybrid of Back Propagation Neural Network and Genetic Algorithm for Optimization of Injection Molding Process Parameters
,”
Mater. Des.
,
32
(
6
), pp.
3457
3464
.10.1016/j.matdes.2011.01.058
You do not currently have access to this content.