Abstract

Thermal conduction considerations of a solid media with moving boundaries are of great interest in many research areas. Unfortunately, it is very difficult to find analytical or semi-analytical solutions for the single-phase heat equation in real-time with a growing or receding boundary. While non-numerical solutions for infinite and semi-infinite domains are available, these cannot accurately model many common situations. In order to overcome this shortcoming, an approximate semi-analytical solution for the heat equation for a single phase, homogeneous, and finite-slab with a growing or receding boundary under unit loading was derived using the Laplace transform method and Zakian series representation of the inverse Laplace transform. Predictions were compared to finite element solutions with good agreement obtained for low to moderate growth or recession rates with improvements shown to be possible by using a heuristic approach. Applications of this work could include direct or inverse prediction of temperatures during machining, wear, corrosion, and/or additive manufacturing via cold spray.

References

1.
Rosenthal
,
D.
,
2022
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
ASME Trans. Am. Soc. Mech. Eng.
,
68
(
8
), pp.
849
865
.10.1115/1.4018624
2.
Álvarez Hostos
,
J.
,
Storti
,
B.
,
Tourn
,
B.
, and
Fachinotti
,
V.
,
2022
, “
Solving Heat Conduction Problems With a Moving Heat Source in Arc Welding Processes Via an Overlapping Nodes Scheme Based on the Improved Element-Free Galerkin Method
,”
Int. J. Heat Mass Transfer
,
192
, p.
122940
.10.1016/j.ijheatmasstransfer.2022.122940
3.
Solyaev
,
Y.
, and
Lurie
,
S.
,
2022
, “
Gradient Models of Moving Heat Sources for Powder Bed Fusion Applications
,”
Int. J. Heat Mass Transfer
,
196
, p.
123221
.10.1016/j.ijheatmasstransfer.2022.123221
4.
Mendez
,
P.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Scaling Analysis of a Moving Point Heat Source in Steady-State on a Semi-Infinite Solid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
8
), p.
081301
.10.1115/1.4039353
5.
Hsieh
,
C.
,
1995
, “
Exact Solution of Stefan Problems Related to a Moving Line Heat Source in a Quasi-Stationary State
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
4
), pp.
1076
1079
.10.1115/1.2836288
6.
Kuang
,
Z.
, and
Atluri
,
S.
,
1985
, “
Temperature Field Due to a Moving Heat Source: A Moving Mesh Finite Element Analysis
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
274
280
.10.1115/1.3169040
7.
Semkin
,
B.
, and
Iushin
,
A.
,
1981
, “
On Danilovskaia Problem for the Case of a Boundary of an Elastic Half-Space Moving With Constant Velocity
,”
J. Appl. Math. Mech.
,
45
(
2
), pp.
291
292
.10.1016/0021-8928(81)90051-4
8.
Selim
,
M.
, and
Seagrave
,
R.
,
1973
, “
Solution of Moving-Boundary Transport Problems in Finite Media by Integral Transforms. I. Problems With a Plane Moving Boundary
,”
Ind. Eng. Chem. Fundam.
,
12
(
1
), pp.
1
8
.10.1021/i160045a001
9.
Gottlieb
,
H.
,
2002
, “
Exact Solution of a Stefan Problem in a Nonhomogeneous Cylinder
,”
Appl. Math. Lett.
,
15
(
2
), pp.
167
172
.10.1016/S0893-9659(01)00113-6
10.
Chen
,
S.
,
Merriman
,
B.
,
Osher
,
S.
, and
Smereka
,
P.
,
1997
, “
A Simple Level Set Method for Solving Stefan Problems
,”
J. Comput. Phys.
,
135
(
1
), pp.
8
29
.10.1006/jcph.1997.5721
11.
Huang
,
C.
, and
Shih
,
Y.
,
1975
, “
A Perturbation Method for Spherical and Cylindrical Solidification
,”
Chem. Eng. Sci.
,
30
(
8
), pp.
897
906
.10.1016/0009-2509(75)80055-8
12.
Savino
,
J.
, and
Siegel
,
R.
,
1969
, “
An Analytical Solution for Solidification of a Moving Warm Liquid Onto an Isothermal Cold Wall
,”
Int. J. Heat Mass Transfer
,
12
(
7
), pp.
803
809
.10.1016/0017-9310(69)90184-7
13.
Caffarelli
,
L.
, and
Kriventsov
,
D.
,
2015
, “
A Free Boundary Problem Related to Thermal Insulation
,”
arXiv:1511.05934
.10.48550/arXiv.1511.05934
14.
Dangui-Mbani
,
U.
,
Sui
,
J.
,
Ming
,
C.
,
Zheng
,
L.
, and
Chen
,
G.
,
2016
, “
Heat Transfer Analysis for a Free Boundary Problem Arising in n-Diffusion Equation
,”
Propul. Power Res.
,
5
(
4
), pp.
261
266
.10.1016/j.jppr.2016.11.001
15.
Meyer
,
G.
,
1977
, “
One-Dimensional Parabolic Free Boundary Problems
,”
SIAM Rev.
,
19
(
1
), pp.
17
34
.10.1137/1019003
16.
Merkin
,
J.
,
1977
, “
Free Convection Boundary Layers on Cylinders of Elliptic Cross Section
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
3
), pp.
453
457
.10.1115/1.3450717
17.
Nilson
,
R.
, and
Tsuei
,
Y.
,
1976
, “
Free Boundary Problem for the Laplace Equation With Application to ECM Tool Design
,”
ASME J. Appl. Mech.
,
43
(
1
), pp.
54
58
.10.1115/1.3423795
18.
Siegel
,
R.
,
1986
, “
Boundary Perturbation Method for Free Boundary Problem in Convectively Cooled Continuous Casting
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
1
), pp.
230
235
.10.1115/1.3246895
19.
Hunter
,
L.
, and
Kuttler
,
J.
,
1989
, “
The Enthalpy Method for Heat Conduction Problems With Moving Boundaries
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
2
), pp.
239
242
.10.1115/1.3250668
20.
Tanigawa
,
Y.
, and
Kuriyama
,
S.
,
1985
, “
Transient Thermal Stresses and Thermal Deformations in a Solid Cylinder With a Moving Boundary
,”
Ing.-Arch.
,
55
(
3
), pp.
221
235
.10.1007/BF00536416
21.
Segall
,
A. E.
,
2012
, “
Inverse Determination of Interfacial Wear Temperatures With a Receding Boundary and the Implications for Tribotesting
,”
Tribol. Trans.
,
55
(
1
), pp.
130
139
.10.1080/10402004.2011.634089
22.
Mayor
,
L.
, and
Sereno
,
A.
,
2004
, “
Modelling Shrinkage During Convective Drying of Food Materials: A Review
,”
J. Food Eng.
,
61
(
3
), pp.
373
386
.10.1016/S0260-8774(03)00144-4
23.
Kreyszig
,
E.
,
2011
,
Advanced Engineering Mathematics
, 10th ed.,
Wiley
,
Hoboken, NJ
, pp.
53
54
.
24.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Oxford Clarendon Press
,
Oxford, UK
, Vol.
2
, pp.
282
296
.
25.
Zakian
,
V.
,
1969
, “
Numerical Inversion of Laplace Transform
,”
Electron. Lett.
,
5
(
6
), pp.
120
121
.10.1049/el:19690090
26.
Halsted
,
D.
, and
Brown
,
D.
,
1972
, “
Zakian's Technique for Inverting Laplace Transforms
,”
Chem. Eng. J.
,
3
, pp.
312
313
.10.1016/0300-9467(72)85037-8
27.
Segall
,
A.
,
Schoof
,
C.
, and
Yastishock
,
D.
,
2020
, “
Thermal Solutions for a Plate With an Arbitrary Temperature Transient on One Surface and Convection on the Other: Direct and Inverse Formulations
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051301
.10.1115/1.4046978
You do not currently have access to this content.