Abstract

The present work demonstrates the use of customized ansys-fluent in performing 3D numerical simulations of nucleate boiling with a sharp interface and adaptive mesh refinement. The developed simulation approach is a reliable and effective tool to investigate 3D boiling phenomena by accurately capturing thermal and fluid dynamic interfacial vapor–liquid interaction and reducing computational time. These methods account for 3D sharp interface and thermal conditions of saturation temperature refining the mesh around the bubble edge. User-defined-functions (UDFs) were developed to customize the software ansys-fluent to preserve the interface sharpness, maintain saturation temperature conditions, and perform effective adaptive mesh refinement in a localized region around the interface. Adaptive mesh refinement is accomplished by a UDF that identifies the cells near the contact line and the liquid–vapor interface and applies the adaptive mesh refinement algorithms only at the identified cells. Validating the approach considered spherical bubble growth with an observed acceptable difference between theoretical and simulation bubble growth rates of 10%. Bubble growth simulations with water reveal an influence region of 2.7 times the departure bubble diameter, and average heat transfer coefficient of 15,000 W/m2 K. In addition, the results indicate a reduced computational time of 75 h using adaptive mesh compared to uniform mesh.

References

1.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
, et al.,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
2.
Lee
,
J. S.
,
Faheem
,
F. F.
,
Kim
,
J. T.
,
Jung
,
J. D.
,
Kim
,
J. Y.
,
Kim
,
J. D.
, and
Lee
,
C. H.
,
2009
, “
Low-Temperature Two-Phase Microchannel Cooling for High-Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
453
460
.10.1109/TCAPT.2008.2005783
3.
Mudawar
,
I.
,
2000
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Components Packaging Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
4.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
3
), p.
034001
.10.1115/1.4005126
5.
Edel
,
Z.
, and
Mukherjee
,
A.
,
2015
, “
Flow Boiling Dynamics of Water and Nanofluids in a Single Microchannel at Different Heat Fluxes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
1
), p.
011501
.10.1115/1.4028763
6.
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2021
, “
Pool Boiling Review: Part II – Heat Transfer Enhancement
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101023
.10.1016/j.tsep.2021.101023
7.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
466
494
.10.1016/j.rser.2017.04.092
8.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
051501
.10.1115/1.4035247
9.
Singh
,
S. K.
,
Sharma
,
D.
, and
Singh
,
A. K.
,
2023
, “
Numerical Investigation on Pool Boiling Heat Transfer of Silica and Alumina Nanofluids
,”
Heat Transfer Eng.
, epub, pp.
1
20
.10.1080/01457632.2023.2220471
10.
Henry
,
C. D.
, and
Kim
,
J.
,
2005
, “
Thermocapillary Effects on Low-g Pool Boiling From Microheater Arrays of Various Aspect Ratio
,”
Microgravity Sci. Technol.
,
16
(
1–4
), pp.
170
175
.10.1007/BF02945970
11.
Henry
,
C. D.
,
Kim
,
J.
, and
McQuillen
,
J.
,
2006
, “
Dissolved Gas Effects on Thermocapillary Convection During Boiling in Reduced Gravity Environments
,”
Heat Mass Transfer
,
42
(
10
), pp.
919
928
.10.1007/s00231-006-0140-8
12.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
6
), p.
061401
.10.1115/1.4023574
13.
Daly
,
B. J.
,
1967
, “
Numerical Study of Two Fluid Rayleigh-Taylor Instability
,”
Phys. Fluids
,
10
(
2
), pp.
297
307
.10.1063/1.1762109
14.
Son
,
G.
, and
Dhir
,
V. K.
,
2008
, “
Numerical Simulation of Nucleate Boiling on a Horizontal Surface at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2566
2582
.10.1016/j.ijheatmasstransfer.2007.07.046
15.
Li
,
D.
, and
Dhir
,
V. K.
,
2006
, “
Numerical Study of a Single Bubble Sliding on a Downward Facing Heated Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
7
), pp.
877
883
.10.1115/1.2717943
16.
Fang
,
J.
, and
Bolotnov
,
I. A.
,
2017
, “
Bubble Tracking Analysis of PWR Two-Phase Flow Simulations Based on the Level Set Method
,”
Nucl. Eng. Des.
,
323
, pp.
68
77
.10.1016/j.nucengdes.2017.07.034
17.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
18.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
19.
Rohsenow
,
W. M.
,
2022
, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
20.
Franz
,
B.
,
Sielaff
,
A.
, and
Stephan
,
P.
,
2021
, “
Numerical Investigation of Successively Nucleating Bubbles During Subcooled Flow Boiling of FC-72 in Microgravity
,”
Microgravity Sci. Technol.
,
33
(
2
), p.
27
.10.1007/s12217-021-09876-6
21.
Zhou
,
Z.
,
Wang
,
S.
,
He
,
J.
,
Ke
,
H.
,
Lin
,
M.
, and
Wang
,
Q.
,
2022
, “
Bubble Dynamics and Heat Transfer Characteristics of Flow Boiling in a Single Pentagonal Rib Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
1
), p.
011602
.10.1115/1.4056067
22.
Cao
,
Z.
,
Zhou
,
J.
,
Wei
,
J.
,
Sun
,
D.
, and
Yu
,
B.
,
2019
, “
Experimental and Numerical Study on Bubble Dynamics and Heat Transfer During Nucleate Boiling of FC-72
,”
Int. J. Heat Mass Transfer
,
139
, pp.
822
831
.10.1016/j.ijheatmasstransfer.2019.05.061
23.
Cao
,
Z.
,
Zhou
,
J.
,
Liu
,
A.
,
Sun
,
D.
,
Yu
,
B.
, and
Wei
,
J.
,
2020
, “
A Three Dimensional Coupled VOF and Level Set (VOSET) Method With and Without Phase Change on General Curvilinear Grids
,”
Chem. Eng. Sci.
,
223
, p.
115705
.10.1016/j.ces.2020.115705
24.
Albadawi
,
A.
,
Donoghue
,
D. B.
,
Robinson
,
A. J.
,
Murray
,
D. B.
, and
Delauré
,
Y. M. C.
,
2013
, “
Influence of Surface Tension Implementation in Volume of Fluid and Coupled Volume of Fluid With Level Set Methods for Bubble Growth and Detachment
,”
Int. J. Multiphase Flow
,
53
, pp.
11
28
.10.1016/j.ijmultiphaseflow.2013.01.005
25.
Dhir
,
V. K.
,
2019
, “
Advances in Understanding of Pool Boiling Heat Transfer—From Earth on to Deep Space
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
5
), p.
050802
.10.1115/1.4043282
26.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
6
), p.
061502
.10.1115/1.4023576
27.
Lee
,
J.
,
Mudawar
,
I.
,
Hasan
,
M. M.
,
Nahra
,
H. K.
, and
Mackey
,
J. R.
,
2022
, “
Experimental and Computational Investigation of Flow Boiling in Microgravity
,”
Int. J. Heat Mass Transfer
,
183
, p.
122237
.10.1016/j.ijheatmasstransfer.2021.122237
28.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
29.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling. Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.10.1016/j.ijheatmasstransfer.2004.07.027
30.
Sato
,
Y.
, and
Niceno
,
B.
,
2018
, “
Pool Boiling Simulation Using an Interface Tracking Method: From Nucleate Boiling to Film Boiling Regime Through Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
125
, pp.
876
890
.10.1016/j.ijheatmasstransfer.2018.04.131
31.
Garg
,
D.
, and
Dhir
,
V. K.
,
2018
, “
A Unified Three-Dimensional Numerical Model for Boiling Curve in a Temperature Controlled Mode1
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
1
), p.
011504
.10.1115/1.4041798
32.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer, Part A: Appl.
,
56
(
8
), pp.
631
646
.10.1080/10407780903423908
33.
Giustini
,
G.
, and
Issa
,
R. I.
,
2021
, “
A Method for Simulating Interfacial Mass Transfer on Arbitrary Meshes
,”
Phys. Fluids
,
33
(
8
), p.
087102
.10.1063/5.0058987
34.
Iskhakova
,
A.
,
Kondo
,
Y.
,
Tanimoto
,
K.
,
Dinh
,
N. T.
, and
Bolotnov
,
I. A.
,
2023
, “
Interface Capturing Flow Boiling Simulations in a Compact Heat Exchanger
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
4
), p.
041605
.10.1115/1.4056688
35.
Urbano
,
A.
,
Tanguy
,
S.
, and
Colin
,
C.
,
2019
, “
Direct Numerical Simulation of Nucleate Boiling in Zero Gravity Conditions
,”
Int. J. Heat Mass Transfer
,
143
, p.
118521
.10.1016/j.ijheatmasstransfer.2019.118521
36.
Jafari
,
R.
, and
Okutucu-Özyurt
,
T.
,
2016
, “
3D Numerical Modeling of Boiling in a Microchannel by Arbitrary Lagrangian–Eulerian (ALE) Method
,”
Appl. Math. Computation
,
272
, pp.
593
603
.10.1016/j.amc.2015.03.042
37.
Yazdani
,
M.
,
Radcliff
,
T.
,
Soteriou
,
M.
, and
Alahyari
,
A. A.
,
2016
, “
A High-Fidelity Approach Towards Simulation of Pool Boiling
,”
Phys. Fluids
,
28
(
1
), p.
012111
.10.1063/1.4940042
38.
Mudawar
,
I.
,
Kim
,
S.
, and
Lee
,
J.
,
2023
, “
A Coupled Level-Set and Volume-of-Fluid (CLSVOF) Method for Prediction of Microgravity Flow Boiling With Low Inlet Subcooling on the International Space Station
,”
Int. J. Heat Mass Transfer
,
217
, p.
124644
.10.1016/j.ijheatmasstransfer.2023.124644
39.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2019
, “
Numerical Modeling and Experimental Validation of Two-Phase Microfluidic Cooling in Silicon Devices for Vertical Integration of Microelectronics
,”
Int. J. Heat Mass Transfer
,
138
, pp.
194
207
.10.1016/j.ijheatmasstransfer.2019.04.036
40.
Balcázar
,
N.
,
Lehmkuhl
,
O.
,
Jofre
,
L.
,
Rigola
,
J.
, and
Oliva
,
A.
,
2016
, “
A Coupled Volume-of-Fluid/Level-Set Method for Simulation of Two-Phase Flows on Unstructured Meshes
,”
Comput. Fluids
,
124
, pp.
12
29
.10.1016/j.compfluid.2015.10.005
41.
Wang
,
Z.
,
Yang
,
J.
,
Koo
,
B.
, and
Stern
,
F.
,
2009
, “
A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves
,”
Int. J. Multiphase Flow
,
35
(
3
), pp.
227
246
.10.1016/j.ijmultiphaseflow.2008.11.004
42.
Pandey
,
V.
,
Biswas
,
G.
, and
Dalal
,
A.
,
2017
, “
Saturated Film Boiling at Various Gravity Levels Under the Influence of Electrohydrodynamic Forces
,”
Phys. Fluids
,
29
(
3
), p.
032104
.10.1063/1.4978056
43.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.10.1016/j.jcp.2008.02.020
44.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2019
, “
Simulation of Nucleate Boiling With Interfacial Temperature Gradients and Sharp Interface
,”
ASME
Paper No. IMECE2018-87998.10.1115/IMECE2018-87998
45.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Numerical Models to Simulate Heat and Mass Transfer at Sharp Interfaces in Nucleate Boiling
,”
Numer. Heat Transfer, Part A
,
74
(
10
), pp.
1583
1610
.10.1080/10407782.2018.1543918
46.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
A Volume of Fluid Based Model for the Simulation of Bubble Growth Over a Heated Surface
,”
ASME
Paper No. ICNMM2018-7710.10.1115/ICNMM2018-7710
47.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Discretization and Implementation of a Sharp Interface Model for Interfacial Heat and Mass Transfer During Bubble Growth
,”
Int. J. Heat Mass Transfer
,
116
, pp.
30
49
.10.1016/j.ijheatmasstransfer.2017.08.106
48.
Lee
,
W. H.
,
1980
, “
Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Multiphase Transport: Fundamentals, Reactor Safety, Applications
, World Scientific, Singapore, pp.
407
432
.10.1142/9789814460286_0004
49.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
50.
Kamotani
,
Y.
,
1978
, “
Evaporator Film Coefficients of Grooved Heat Pipes
,”
3rd International Heat Pipe Conference
,
American Institute of Aeronautics and Astronautics
, Palo Alto, CA, May 22, pp.
128
130
.
51.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.10.1016/0017-9310(92)90276-X
52.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Warme Stoffubertragung
,
30
(
2
), pp.
119
125
.10.1007/BF00715018
53.
Raj
,
R.
,
Kunkelmann
,
C.
,
Stephan
,
P.
,
Plawsky
,
J.
, and
Kim
,
J.
,
2012
, “
Contact Line Behavior for a Highly Wetting Fluid Under Superheated Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2664
2675
.10.1016/j.ijheatmasstransfer.2011.12.026
54.
Herbert
,
S.
,
Fischer
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Local Heat Transfer and Phase Change Phenomena During Single Drop Impingement on a Hot Surface
,”
Int. J. Heat Mass Transfer
,
61
, pp.
605
614
.10.1016/j.ijheatmasstransfer.2013.01.081
55.
Banerjee
,
S.
,
Lian
,
Y.
,
Liu
,
Y.
, and
Sussman
,
M.
,
2022
, “
A New Method for Estimating Bubble Diameter at Different Gravity Levels for Nucleate Pool Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
2
), p.
021601
.10.1115/1.4053102
56.
Dhruv
,
A.
,
Balaras
,
E.
,
Riaz
,
A.
, and
Kim
,
J.
,
2019
, “
A Formulation for High-Fidelity Simulations of Pool Boiling in Low Gravity
,”
Int. J. Multiphase Flow
,
120
, p.
103099
.10.1016/j.ijmultiphaseflow.2019.103099
57.
Akhtar
,
M. W.
, and
Kleis
,
S. J.
,
2013
, “
Boiling Flow Simulations on Adaptive Octree Grids
,”
Int. J. Multiphase Flow
,
53
, pp.
88
99
.10.1016/j.ijmultiphaseflow.2013.01.008
58.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
59.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
, New York.
60.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Numerical Modeling of Interfacial Heat and Mass Transport Phenomena During a Phase Change Using ANSYS-Fluent
,”
Numer. Heat Transfer, Part B
,
70
(
4
), pp.
322
339
.10.1080/10407790.2016.1215708
61.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Chapter Three - Evaporation on a Planar Interface – Numerical Simulation and Theoretical Analysis of Heat and Mass Transport Processes
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
,
J. M.
Gorman
,
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
125
190
.
62.
Perez-Raya
,
I.
,
2023
, “
Relevant Aspects to Generate Reliable Simulations of Boiling Heat Transfer
,” ASME Paper No.. IMECE2022-97056.10.1115/IMECE2022-97056
63.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
91
(
2
), pp.
245
250
.10.1115/1.3580136
64.
Chi-Yeh
,
H.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I: Bubble Initiaton, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
65.
Qiu
,
D.
,
Son
,
G.
,
Dhir
,
V. K.
,
Chao
,
D.
, and
Logsdon
,
K.
,
2002
, “
Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions
,”
Ann. New York Acad. Sci.
,
974
(
1
), pp.
378
397
.10.1111/j.1749-6632.2002.tb05920.x
66.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
12
), pp.
1285
1292
.10.1115/1.2397093
67.
Dhir
,
V.
,
2007
, “
A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions (Nucleate Pool Boiling Experiment, NPBX)
,” Nucleate Pool Booling Experiment, NPBX, NASA, physical-sciences-informatics-psi, accessed Jan. 16, 2024, https://psi.ndc.nasa.gov/app/record/7285
You do not currently have access to this content.