Abstract

The current analysis examines the thermofluid properties of an infrared suppression (IRS) system with louvered conical diathermic funnel walls in the presence of surface radiation. An IRS device's flow and heat transfer characteristics are challenging because cold atmospheric air is entrained through the interfunnel openings into the IRS and mixes hot exhaust gas from the turbine in naval/cargo ships. The full Navier–Stokes equation is solved along with the energy equation and radiative transfer equation (where applicable) for modeling a three-dimensional actual-scale IRS device with louvered conical funnel walls. This study elucidates the influence of the Reynolds number (6.1×105 to 3.18×106) nozzle overlapping, inclination angle, funnel overlapping, and guide vanes on the air intake and system exit temperature. The calculation of the lock-on range on the ship with or without the IRS device. The performance of a diathermic wall with surface radiation is significantly improved.

References

1.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
2.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigations of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.10.1016/j.applthermaleng.2005.04.011
3.
Jianwei
,
L.
, and
Qiang
,
W.
,
2009
, “
Aircraft-Skin Infrared Radiation Characteristics Modeling and Analysis
,”
Chin. J. Aeronaut.
,
22
(
5
), pp.
493
497
.10.1016/S1000-9361(08)60131-4
4.
Chen
,
Q.
, and
Birk
,
A. M.
,
2007
, “
Experimental and CFD Study of an Exhaust Ejector With Round Entraining Diffuser
,”
ASME
Paper No. GT2007-27643.10.1115/GT2007-27643
5.
Thompson
,
J.
, and
Vaitekunas
,
D.
, and Birk, A. M.,
1998
, “
IR Signature Suppression of Modern Naval Ships 1
,”
ASNE 21st Century Combatant Technology Symposium
, Jan. 27–30, pp.
1
9
.
6.
Shaorong
,
Z.
,
Zhaohui
,
D.
,
Hanping
,
C.
, and
Fangyuan
,
Z.
,
2000
, “
Numerical and Experimental Study on the Suppression for the Infrared Signatures of a Marine Gas Turbine Exhaust System
,”
ASME
Paper No. 2000-GT-0322.10.1115/2000-GT-0322
7.
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2011
, “
Influence of Geometry on Starting Vortex and Ejector Performance
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051204
.10.1115/1.4004082
8.
Im
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
9.
Sun
,
T.
,
Luan
,
Y.
,
Sun
,
L.
, and
Sun
,
P.
,
2016
, “
Research on Characteristics of a New Marine Gas Turbine Exhaust Ejector Device
,”
ASME
Paper No. GT2016-57214.10.1115/GT2016-57214
10.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.10.1016/j.compfluid.2010.05.012
11.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.10.1002/fld.2106
12.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.10.1016/j.applthermaleng.2014.05.042
13.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.10.1016/j.apor.2014.06.007
14.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.10.1016/j.compfluid.2015.02.016
15.
Sheng
,
Z. Q.
,
Huang
,
P. L.
,
Zhao
,
T.
, and
Ji
,
J. Z.
,
2015
, “
Configurations of Lobed Nozzles for High Mixing Effectiveness
,”
Int. J. Heat Mass Transfer
,
91
, pp.
671
683
.10.1016/j.ijheatmasstransfer.2015.08.022
16.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2020
, “
Comparison Between a Conventional and a New IRS Device in Terms of Air Entrainment: An Experimental and Numerical Analysis
,”
J. Ship Res.
,
64
(
04
), pp.
357
371
.10.5957/JOSR.06190034
17.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2019
, “
Effect of Slot-Guidance and Slot-Area on Air Entrainment in a Conical Ejector Diffuser for Infrared Suppression
,”
J. Appl. Fluid Mech.
,
12
(
4
), pp.
1301
1317
.10.29252/jafm.12.04.29326
18.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1995
, “
Combined Conduction, Convection and Radiation in a Slot
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
139
144
.10.1016/0142-727X(94)00014-4
19.
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2018
, “
Radiation Effect on Conjugate Turbulent Natural Convection in a Cavity With a Discrete Heater
,”
Appl. Math. Comput.
,
321
, pp.
358
371
.10.1016/j.amc.2017.11.010
20.
Lakhal
,
W.
,
Trabelsi
,
S.
,
Sediki
,
E.
, and
Moussa
,
M.
,
2009
, “
Combined Thermal Radiation and Mixed Convection in an Inclined Circular Duct
,”
Am. J. Eng. Appl. Sci.
,
2
(
4
), pp.
590
602
.10.3844/ajeassp.2009.590.602
21.
Sediki
,
E. E.
,
Soufiani
,
A.
, and
Sifaoui
,
M. S.
,
2003
, “
Combined Gas Radiation and Laminar Mixed Convection in Vertical Circular Tubes
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
736
746
.10.1016/S0142-727X(03)00005-5
22.
Chiu
,
H. C.
,
Jang
,
J. H.
, and
Yan
,
W. M.
,
2007
, “
Mixed Convection Heat Transfer in Horizontal Rectangular Ducts With Radiation Effects
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2874
2882
.10.1016/j.ijheatmasstransfer.2007.01.010
23.
Chiu
,
H. C.
,
Jang
,
J. H.
, and
Yan
,
W. M.
,
2007
, “
Combined Mixed Convection and Radiation Heat Transfer in Rectangular Ducts Rotating About a Parallel Axis
,”
Int. J. Heat Mass Transfer
, 50(21–22), pp.
4229
4242
.10.1016/j.ijheatmasstransfer.2007.02.032
24.
Schuler
,
C.
, and
Campo
,
A.
,
1988
, “
Numerical Prediction of Turbulent Heat Transfer in Gas Pipe Flows Subject to Combined Convection and Radiation
,”
Int. J. Heat Fluid Flow
,
9
(
3
), pp.
308
315
.10.1016/0142-727X(88)90042-2
25.
Yang
,
L.-K.
,
1991
, “
Combined Mixed Convection and Radiation in a Vertical Pipe
,”
Int. Commun. Heat Mass Transfer
,
18
(
4
), pp.
419
430
.10.1016/0735-1933(91)90058-C
26.
Kim
,
T. K.
, and
Smith
,
T. F.
,
1985
, “
Radiative and Conductive Transfer for a Real Gas in a Cylindrical Enclosure With Gray Walls
,”
Int. J. Heat Mass Transfer
,
28
(
12
), pp.
2269
2277
.10.1016/0017-9310(85)90045-6
27.
Xamán
,
J.
,
Arce
,
J.
,
Álvarez
,
G.
, and
Chávez
,
Y.
,
2008
, “
Laminar and Turbulent Natural Convection Combined With Surface Thermal Radiation in a Square Cavity With a Glass Wall
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1630
1638
.10.1016/j.ijthermalsci.2008.01.012
28.
Hossain
,
M. A.
,
Kutubuddin
,
M.
, and
Pop
,
I.
,
1999
, “
Radiation-Conduction Interaction on Mixed Convection From a Horizontal Circular Cylinder
,”
Heat Mass Transfer
,
35
, pp.
307
314
.10.1007/s002310050329
29.
Baham
,
G. J.
,
Mccallum
,
D.
, and
Member
,
A.
,
1977
, “
Stack Design Technology for Naval and Merchant Ships
,” SNAME Trans.,
85
, pp.
324
349
.
30.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105208
.10.1016/j.icheatmasstransfer.2021.105208
31.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
8
), p.
082101
.10.1115/1.4051129
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
33.
Barik
,
A. K.
,
Mukherjee
,
A.
, and
Patro
,
P.
,
2015
, “
Heat Transfer Enhancement From a Small Rectangular Channel With Different Surface Protrusions by a Turbulent Cross Flow Jet
,”
Int. J. Therm. Sci.
,
98
, pp.
32
41
.10.1016/j.ijthermalsci.2015.07.003
34.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Entropy Generation in Laminar and Turbulent Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
4
), p.
042501
.10.1115/1.4035355
35.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2021
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transfer Part A Appl.
,
79
(
6
), pp.
463
487
.10.1080/10407782.2020.1847524
36.
Saedodin
,
S.
, and
Motaghedi Barforoush
,
M. S.
,
2015
, “
Experimental and Numerical Investigations on Enclosure Pressure Effects on Radiation and Convection Heat Losses From Two Finite Concentric Cylinders Using Two Radiation Shields
,”
Energy
,
90
(
1
), pp.
652
662
.10.1016/j.energy.2015.07.091
37.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
International Journal of Thermal Sciences Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.10.1016/j.ijthermalsci.2019.03.034
38.
Weng
,
L. C.
, and
Chu
,
H. S.
,
1996
, “
Combined Natural Convection and Radiation in a Vertical Annulus
,”
Heat Mass Transfer
,
31
(
6
), pp.
371
379
.10.1007/BF02172581
39.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2022
, “
Thermo-Fluid Characteristics of an IRS System With Louvered Cylindrical Diathermic Funnels Considering Surface Radiation: A Three-Dimensional Numerical Exercise
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106132
.10.1016/j.icheatmasstransfer.2022.106132
40.
Mukherjee
,
A.
,
Senapati
,
J. R.
,
Rathore
,
S. K.
, and
Barik
,
A. K.
,
2022
, “
Comparative Assessment of Different Turbulence Models to Estimate Thermo-Fluid Characteristics of an Infrared Suppression (IRS) Device
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
7
), p.
073501
.10.1115/1.4054415
41.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.10.1016/j.ijthermalsci.2020.106355
42.
Anavilla
,
M. V. S. N.
,
Kambagowni
,
S. V.
, and
Vepakomma
,
R. B.
,
2019
, “
Design and Validation of Diesel Engine Infrared Signature Suppression Devices for Naval Ships
,”
J. Inst. Eng. Ser. C
,
100
(
5
), pp.
717
727
.10.1007/s40032-019-00525-x
43.
Ab-Rahman
,
M. S.
, and
Hassan
,
M. R.
,
2009
, “
Analytical Analysis of Lock-on Range of Infrared Heat Seeker Missile
,”
Aust. J. Basic Appl. Sci.
,
3
(
4
), pp.
3703
3713
.
44.
Schleher
,
D. C.
,
1999
,
Electronic Warfare in the Information Age
,
Artech House
, Boston, London.
45.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
You do not currently have access to this content.