Abstract

The transient convective flow adjacent to an inclined semi-infinite plate which is heated by a linear temperature gradient is investigated with scaling analysis and direct numerical simulation (DNS) in this study. Both Pr < 1 and Pr > 1 fluids are considered. The initial ambient fluid is quiescent and thermally homogeneous. Important parameters characterizing the thermal boundary layer flow are thickness, characteristic velocity, and time to reach the steady stage. Scaling analysis is carried out to obtain scales for these flow parameters. Compared to previous similar studies, the obtained scale relations are more generalized and they can be utilized for different inclination angles. The derived scales are compared against the DNS results for a variety of flow parameters, e.g., Rayleigh number Ra, Prandtl number Pr, stratification factor s (s = dθw(y)/dy, where θw(y) is the local temperature at a streamwise location of y), inclination angle of the heated plate α, evolutionary time τ, and streamwise location y. The scale relations and the DNS results compare well suggesting the proposed scale laws can provide a sound description for the dynamics of the convective flow subjected to a tilted surface and a linear heating condition.

References

1.
Prandtl
,
L.
,
1904
, “
On Fluid Flow With Very Little Friction
,”
Proceedings of the 3rd International Congress of Mathematicians
,
Germany, Heidelberg
, pp.
484
491
.
2.
Jacobi
,
A.
,
1993
, “
A Scale Analysis Approach to the Correlation of Continuous Moving Sheet (Backward Boundary Layer) Forced Convective Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
4
), pp.
1058
1061
.10.1115/1.2911362
3.
Henkes
,
R.
, and
Hoogendoorn
,
C.
,
1994
, “
Scaling of the Turbulent Natural Convection Flow in a Heated Square Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
2
), pp.
400
408
.10.1115/1.2911412
4.
Wang
,
X.
,
Castillo
,
L.
, and
Araya
,
G.
,
2008
, “
Temperature Scalings and Profiles in Forced Convection Turbulent Boundary Layers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
2
), p.
021701
.10.1115/1.2813781
5.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2011
, “
Scaling of Natural Convection of an Inclined Flat Plate: Sudden Cooling Condition
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
4
), p.
041503
.10.1115/1.4002982
6.
Liu
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
,
2014
, “
Natural Convection in a Differentially Heated Cavity With Two Horizontal Adiabatic Fins on the Sidewalls
,”
Int. J. Heat Mass Transfer
,
72
, pp.
23
36
.10.1016/j.ijheatmasstransfer.2013.12.083
7.
Liu
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
,
2015
, “
Plume Separation From an Adiabatic Horizontal Thin Fin Placed at Different Heights on the Sidewall of a Differentially Heated Cavity
,”
Int. Commun. Heat Mass Transfer
,
61
, pp.
162
169
.10.1016/j.icheatmasstransfer.2014.12.007
8.
Liu
,
Y.
,
Zhang
,
S.
,
Huang
,
H.
,
Suo
,
Q.
,
Bian
,
Y.
, and
Zhao
,
Y.
,
2019
, “
Enhancing the Flow and Heat Transfer in a Convective Cavity Using Symmetrical and Adiabatic Twin Fins
,”
Int. J. Heat Mass Transfer
,
142
, p.
118447
.10.1016/j.ijheatmasstransfer.2019.118447
9.
Patterson
,
J. C.
, and
Imberger
,
J.
,
1980
, “
Unsteady Natural-Convection in a Rectangular Cavity
,”
J. Fluid Mech.
,
100
(
1
), pp.
65
86
.10.1017/S0022112080001012
10.
Xu
,
F.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2010
, “
Temperature Oscillations in a Differentially Heated Cavity With and Without a Fin on the Sidewall
,”
Int. Commun. Heat Mass Transfer
,
37
(
4
), pp.
350
359
.10.1016/j.icheatmasstransfer.2010.01.004
11.
Liu
,
Y.
,
Bian
,
Y.
,
Zhao
,
Y.
,
Zhang
,
S.
, and
Suo
,
Q.
,
2019
, “
Scaling Laws for the Transient Convective Flow in a Differentially and Linearly Heated Rectangular Cavity at Pr > 1
,”
Phys. Fluids
,
31
(
4
), p.
043601
.10.1063/1.5087907
12.
Patterson
,
J. C.
,
Graham
,
T.
,
Schopf
,
W.
, and
Armfield
,
S. W.
,
2002
, “
Boundary Layer Development on a Semi-Infinite Suddenly Heated Vertical Plate
,”
J. Fluid Mech.
,
453
, pp.
39
55
.10.1017/S0022112001006553
13.
Lin
,
W.
,
Armfield
,
S. W.
, and
Patterson
,
J. C.
,
2007
, “
Cooling of a Pr < 1 Fluid in a Rectangular Container
,”
J. Fluid Mech.
,
574
, pp.
85
108
.10.1017/S0022112006003703
14.
Xu
,
F.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2010
, “
Pr < 1 Intrusion Flow Induced by a Vertical Heated Wall
,”
Phys. Rev. E
,
82
, p.
026318
.10.1103/PhysRevE.82.026318
15.
Xu
,
F.
,
Patterson
,
J. C.
, and
Lei
,
C. W.
,
2009
, “
Transient Natural Convection Flows Around a Thin Fin on the Sidewall of a Differentially Heated Cavity
,”
J. Fluid Mech.
,
639
, pp.
261
290
.10.1017/S0022112009990991
16.
Mahajan
,
R. L.
, and
Gebhart
,
B.
,
1978
, “
Higher Order Approximations to the Natural Convection Flow Over a Uniform Flux Vertical Surface
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
549
556
.10.1016/0017-9310(78)90051-0
17.
Cianfrini
,
C.
,
Corcione
,
M.
, and
Fontana
,
D. M.
,
2002
, “
Laminar Free Convection From a Vertical Plate With Uniform Surface Heat Flux in Chemically Reacting Systems
,”
Int. J. Heat Mass Transfer
,
45
(
2
), pp.
319
329
.10.1016/S0017-9310(01)00144-2
18.
Lin
,
W.
,
Armfield
,
S. W.
, and
Morgan
,
P. L.
,
2002
, “
Unsteady Natural Convection Boundary-Layer Flow Along a Vertical Isothermal Plate in a Linearly Stratified Fluid With Pr > 1
,”
Int. J. Heat Mass Transfer
,
45
(
2
), pp.
451
459
.10.1016/S0017-9310(01)00154-5
19.
Liu
,
Y.
, and
Huang
,
H.
,
2020
, “
Effect of Three Modes of Linear Thermal Forcing on Convective Flow and Heat Transfer in Rectangular Cavities
,”
Int. J. Heat Mass Transfer
,
147
, p.
118951
.10.1016/j.ijheatmasstransfer.2019.118951
20.
Liu
,
Y.
,
2019
, “
Scaling of Convective Boundary Layer Flow Induced by Linear Thermal Forcing at Pr < 1 and Pr > 1
,”
Phys. Rev. E
,
100
(
4
), p.
043112
.10.1103/PhysRevE.100.043112
21.
Lin
,
W.
,
Armfield
,
S. W.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2009
, “
Prandtl Number Scaling of Unsteady Natural Convection Boundary Layers for Pr > 1 Fluids Under Isothermal Heating
,”
Phys. Rev. E
,
79
(
6
), p.
066313
.10.1103/PhysRevE.79.066313
22.
Armfield
,
S. W.
,
Patterson
,
J. C.
, and
Lin
,
W.
,
2007
, “
Scaling Investigation of the Natural Convection Boundary Layer on an Evenly Heated Plate
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1592
1602
.10.1016/j.ijheatmasstransfer.2006.08.020
23.
Lin
,
W.
,
Armfield
,
S. W.
, and
Patterson
,
J. C.
,
2008
, “
Unsteady Natural Convection Boundary-Layer Flow of a Linearly-Stratified Fluid With Pr < 1 on an Evenly Heated Semi-Infinite Vertical Plate
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
327
343
.10.1016/j.ijheatmasstransfer.2007.03.040
24.
Lin
,
W.
, and
Armfield
,
S. W.
,
2013
, “
Scalings for Unsteady Natural Convection Boundary Layers on an Evenly Heated Plate With Time-Dependent Heating Flux
,”
Phys. Rev. E
,
88
(
6
), p.
063013
.10.1103/PhysRevE.88.063013
25.
Ganesan
,
P.
, and
Palani
,
G.
,
2003
, “
Natural Convection Effects on Impulsively Started Inclined Plate With Heat and Mass Transfer
,”
Heat Mass Transfer
,
39
(
4
), pp.
277
283
.10.1007/s00231-002-0380-1
26.
Ganesan
,
P.
, and
Palani
,
G.
,
2004
, “
Finite Difference Analysis of Unsteady Natural Convection MHD Flow Past an Inclined Plate With Variable Surface Heat and Mass Flux
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4449
4457
.10.1016/j.ijheatmasstransfer.2004.04.034
27.
Jeschke
,
P.
, and
Beer
,
H.
,
2001
, “
Longitudinal Vortices in a Laminar Natural Convection Boundary Layer Flow on an Inclined Flat Plate and Their Influence on Heat Transfer
,”
J. Fluid Mech.
,
432
, pp.
313
339
.10.1017/S0022112000003190
28.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C. W.
,
2010
, “
Natural Convection Boundary-Layer Adjacent to an Inclined Flat Plate Subject to Sudden and Ramp Heating
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1600
1612
.10.1016/j.ijthermalsci.2010.03.017
29.
Saha
,
S. C.
, and
Khan
,
M. M. K.
,
2012
, “
An Improved Boundary Layer Scaling With Ramp Heating on a Sloping Plate
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2268
2284
.10.1016/j.ijheatmasstransfer.2012.01.038
30.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2010
, “
Scaling of Natural Convection of an Inclined Flat Plate: Ramp Cooling Condition
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5156
5166
.10.1016/j.ijheatmasstransfer.2010.07.047
31.
Saha
,
S. C.
,
Brown
,
R. J.
, and
Gu
,
Y. T.
,
2012
, “
Scaling for the Prandtl Number of the Natural Convection Boundary Layer of an Inclined Flat Plate Under Uniform Surface Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2394
2401
.10.1016/j.ijheatmasstransfer.2012.01.019
32.
Liu
,
Y.
,
2020
, “
Dynamics and Scale Analysis of the Transient Convective Flow Induced by Cooling a Pr < 1 Fluid With Linear Thermal Forcing
,”
Int. J. Heat Mass Transfer
,
154
, p.
119767
.10.1016/j.ijheatmasstransfer.2020.119767
33.
Liu
,
Y.
, and
Ren
,
S.
,
2020
, “
Improved Scaling Analysis of the Transient Buoyancy-Driven Flow Induced by a Linear Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
162
, p.
120386
.10.1016/j.ijheatmasstransfer.2020.120386
34.
Liu
,
Y.
, and
Zhang
,
S.
,
2022
, “
Convection in a Differentially Heated Cavity With a Conducting Fin Attached at the Bottom and Ceiling
,”
Int. J. Heat Mass Transfer
,
186
, p.
122430
.10.1016/j.ijheatmasstransfer.2021.122430
35.
Liu
,
Y.
, and
Ren
,
S.
,
2021
, “
Receptivity of Incompressible Convective Boundary Layers Induced by Linear Thermal Forcing
,”
Phys. Fluids
,
33
(
3
), p.
034127
.10.1063/5.0044638
36.
Liu
,
Y.
, and
Ren
,
S.
,
2021
, “
Scale Law Analysis of the Curved Boundary Layer Evolving Around a Horizontal Cylinder at Pr > 1
,”
Phys. Fluids
,
33
(
7
), p.
073614
.10.1063/5.0060202
37.
Liu
,
Y.
, and
Liu
,
C.
,
2022
, “
Unified Scale Laws for Transient Convective Boundary Layers: From Flat to Curved Boundary Layers
,”
Phys. Rev. Fluids
,
7
(
5
), p.
054101
.10.1103/PhysRevFluids.7.054101
38.
Xu
,
F.
,
Patterson
,
J.
, and
Lei
,
C.
,
2005
, “
Shadowgraph Observations of the Transition of the Thermal Boundary Layer in a Side-Heated Cavity
,”
Exp. Fluids
,
38
(
6
), pp.
770
779
.10.1007/s00348-005-0960-1
You do not currently have access to this content.