Abstract

Pure SiO2 aerogel has a strong light transmittance in the infrared wavebands from 3.0 to 8.0 μm, and an opacifier could efficiently reduce aerogel's radiative thermal conductivity (λr), especially at high temperatures (>400 K). Consequently, the λr of different core/shell structured opacifiers is proposed, including micron hollow sphere opacifier (MHSOP), i.e., hollow carbon black/SiC/TiO2, and phase change material (PCM)/opacifier, i.e., VO2/SiO2, and Ge2Sb2Te5/SiC; further, their conductive λ model has also been established. The results showed that MHSOP could reduce MHSOPs-SiO2 aerogel composite's λ compared to traditional solid structure opacifiers; the effect of MHSOPs with a certain core–shell ratio on suppressing thermal radiation is equivalent to their solid structure opacifier at high-temperature. Adding SiC MHSOPs reduces aerogel composites' weight and thermal conductivity by 42.19 and 26.29%, while the shading effect of a core–shell ratio of over 0.75 is equivalent to the solid structure. Specifically, rutile-phased VO2/SiO2's λr is smaller than TiO2 MHOSP, and crystalline Ge2Sb2Te5/SiC doped aerogel exhibits good thermal insulation. The proposed micron hollow sphere opacifier and PCM/opacifier provide a novelty, lightweight, and high-efficiency method to restrain aerogel's infrared radiation and improve insulation performance at high temperatures.

References

1.
Zhang
,
M.
,
Xiao
,
Q.
,
Chen
,
C.
,
Li
,
L.
, and
Yuan
,
W.
,
2020
, “
Developing a Heat-Insulating Composite Phase Change Material With Light-to-Thermal Conversion Performance From Graphene Oxide/Silica Hybrid Aerogel
,”
Appl. Therm. Eng.
,
174
, p.
115303
.10.1016/j.applthermaleng.2020.115303
2.
Qu
,
M. L.
,
Tian
,
S. Q.
,
Fan
,
L. W.
,
Yu
,
Z. T.
, and
Ge
,
J.
,
2020
, “
An Experimental Investigation and Fractal Modeling on the Effective Thermal Conductivity of Novel Autoclaved Aerated Concrete (AAC)-Based Composites With Silica Aerogels (SA)
,”
Appl. Therm. Eng.
,
179
, p.
115770
.10.1016/j.applthermaleng.2020.115770
3.
Dai
,
Y. J.
,
Tang
,
Y. Q.
,
Fang
,
W. Z.
,
Zhang
,
H.
, and
Tao
,
W. Q.
,
2018
, “
A Theoretical Model for the Effective Thermal Conductivity of Silica Aerogel Composites
,”
Appl. Therm. Eng.
,
128
, pp.
1634
1645
.10.1016/j.applthermaleng.2017.09.010
4.
Li
,
D.
,
Zhang
,
C.
,
Li
,
Q.
,
Liu
,
C.
,
Arıcı
,
M.
, and
Wu
,
Y.
,
2020
, “
Thermal Performance Evaluation of Glass Window Combining Silica Aerogels and Phase Change Materials for Cold Climate of China
,”
Appl. Therm. Eng.
,
165
, p.
114547
.10.1016/j.applthermaleng.2019.114547
5.
Shang
,
L.
,
Lyu
,
Y.
, and
Han
,
W.
,
2019
, “
Microstructure and Thermal Insulation Property of Silica Composite Aerogel
,”
Materials
,
12
(
6
), p.
993
.10.3390/ma12060993
6.
Liu
,
Y.
,
Chen
,
Z.
,
Zhang
,
J.
,
Ai
,
S.
, and
Tang
,
H.
,
2019
, “
Ultralight and Thermal Insulation Carbon Foam/SiO2 Aerogel Composites
,”
J. Porous Mater.
,
26
(
5
), pp.
1305
1312
.10.1007/s10934-019-00732-y
7.
Zhang
,
X.
,
Ni
,
X.
,
Li
,
C.
,
You
,
B.
, and
Sun
,
G.
,
2020
, “
Co-Gel Strategy for Preparing Hierarchically Porous Silica/Polyimide Nanocomposite Aerogel With Thermal Insulation and Flame Retardancy
,”
J. Mater. Chem. A
,
8
(
19
), pp.
9701
9712
.10.1039/C9TA13011J
8.
Zhao
,
Z.
,
Cui
,
Y.
,
Kong
,
Y.
,
Ren
,
J.
,
Jiang
,
X.
,
Yan
,
W.
,
Li
,
M.
,
Tang
,
J.
,
Liu
,
X.
, and
Shen
,
X.
,
2021
, “
Thermal and Mechanical Performances of the Superflexible, Hydrophobic, Silica-Based Aerogel for Thermal Insulation at Ultralow Temperature
,”
ACS Appl. Mater. Interfaces
,
13
(
18
), pp.
21286
21298
.10.1021/acsami.1c02910
9.
Zhao
,
Y.
,
Tang
,
G. H.
, and
Du
,
M.
,
2015
, “
Numerical Study of Radiative Properties of Nanoporous Silica Aerogel
,”
Int. J. Therm. Sci.
,
89
, pp.
110
120
.10.1016/j.ijthermalsci.2014.10.013
10.
Wei
,
G.
,
Liu
,
Y.
,
Du
,
X.
, and
Zhang
,
X.
,
2012
, “
Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
4
), p. 041301.10.1115/1.4004170
11.
Zeng
,
S.
,
Hunt
,
A.
, and
Greif
,
R.
,
1995
, “
Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
4
), pp.
1055
1058
.10.1115/1.2836281
12.
Li
,
T.
,
Du
,
A.
,
Zhang
,
T.
,
Ding
,
W.
,
Liu
,
M.
,
Shen
,
J.
,
Zhang
,
Z.
, and
Zhou
,
B.
,
2018
, “
Continuous Adjustment of Fractal Dimension of Silica Aerogels
,”
J. Non-Cryst. Solids
,
499
, pp.
159
166
.10.1016/j.jnoncrysol.2018.07.026
13.
Paik
,
J. A.
,
Sakamoto
,
J.
,
Jones
,
S.
,
Fleurial
,
J. P.
,
DiStefano
,
S.
, and
Nesmith
,
B.
,
2009
, “
Composite Silica Aerogels Opacified With Titania
,” NASA Tech Briefs, 20090040050, Report No. NPO-44732.
14.
Singh
,
H.
,
Geisler
,
M.
, and
Menzel
,
F.
,
2015
, “
Experimental Investigations Into Thermal Transport Phenomena in Vacuum Insulation Panels (VIPs) Using Fumed Silica Cores
,”
Energy Build.
,
107
, pp.
76
83
.10.1016/j.enbuild.2015.08.004
15.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
,
Zhang
,
X. R.
,
Han
,
Y. H.
,
Gao
,
Y. B.
,
Lv
,
Z. H.
,
Yu
,
H. T.
, and
Wang
,
B. X.
,
2013
, “
Optical and Radiative Properties of Infrared Opacifier Particles Loaded in Silica Aerogels for High Temperature Thermal Insulation
,”
Int. J. Therm. Sci.
,
70
, pp.
54
64
.10.1016/j.ijthermalsci.2013.03.020
16.
Zhu
,
C. Y.
,
Li
,
Z. Y.
,
Pang
,
H. Q.
, and
Pan
,
N.
,
2018
, “
Design and Optimization of Core/Shell Structures as Highly Efficient Opacifiers for Silica Aerogels as High-Temperature Thermal Insulation
,”
Int. J. Therm. Sci.
,
133
, pp.
206
215
.10.1016/j.ijthermalsci.2018.07.032
17.
Morin
,
F. J.
,
1959
, “
Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature
,”
Phys. Rev. Lett.
,
3
(
1
), pp.
34
36
.10.1103/PhysRevLett.3.34
18.
Ye
,
H.
,
Wang
,
H.
, and
Cai
,
Q.
,
2015
, “
Two-Dimensional VO2 Photonic Crystal Selective Emitter
,”
J. Quant. Spectrosc. Radiat. Transfer
,
158
, pp.
119
126
.10.1016/j.jqsrt.2015.01.022
19.
Song
,
T. T.
,
He
,
J.
,
Meng
,
Q. K.
, and
Sun
,
P.
,
2008
, “
Calculation of Electronic Structure and Optical Properties of VO2
,”
J. Light Scattering
,
20
(
2
), pp.
194
199
.10.1016/S1872-1508(08)60035-2
20.
Duan
,
X.
,
White
,
S. T.
,
Cui
,
Y.
,
Neubrech
,
F.
,
Gao
,
Y.
,
Haglund
,
R. F.
, and
Liu
,
N.
,
2020
, “
Reconfigurable Multistate Optical Systems Enabled by VO2 Phase Transitions
,”
ACS Photonics
,
7
(
11
), pp.
2958
2965
.10.1021/acsphotonics.0c01241
21.
Shportko
,
K.
,
Kremers
,
S.
,
Woda
,
M.
,
Lencer
,
D.
,
Robertson
,
J.
, and
Wuttig
,
M.
,
2008
, “
Resonant Bonding in Crystalline Phase-Change Materials
,”
Nat. Mater.
,
7
(
8
), pp.
653
658
.10.1038/nmat2226
22.
Lee
,
J.
,
Li
,
Z.
,
Reifenberg
,
J. P.
,
Lee
,
S.
,
Sinclair
,
R.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conductivity Anisotropy and Grain Structure in Ge2Sb2Te5 Films
,”
J. Appl. Phys.
,
109
(
8
), p.
084902
.10.1063/1.3573505
23.
Kato
,
T.
, and
Tanaka
,
K.
,
2005
, “
Electronic Properties of Amorphous and Crystalline Ge2Sb2Te5 Films
,”
Jpn. J. Appl. Phys.
,
44
(
10
), pp.
7340
7344
.10.1143/JJAP.44.7340
24.
Xie
,
T.
,
He
,
Y. L.
, and
Hu
,
Z. J.
,
2013
, “
Theoretical Study on Thermal Conductivities of Silica Aerogel Composite Insulating Material
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
540
552
.10.1016/j.ijheatmasstransfer.2012.11.016
25.
Liu
,
H.
,
Li
,
Z. Y.
,
Zhao
,
X. P.
, and
Tao
,
W. Q.
,
2016
, “
Investigation of the Effect of the Gas Permeation Induced by Pressure Gradient on Transient Heat Transfer in Silica Aerogel
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1026
1037
.10.1016/j.ijheatmasstransfer.2016.01.003
26.
Li
,
Y. H.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2014
, “
An Ideal Nano-Porous Insulation Material: Design, Modeling and Numerical Validation
,”
Appl. Therm. Eng.
,
72
(
1
), pp.
34
40
.10.1016/j.applthermaleng.2013.12.041
27.
Wang
,
M.
,
Wang
,
X.
,
Wang
,
J.
, and
Pan
,
N.
,
2013
, “
Grain Size Effects on Effective Thermal Conductivity of Porous Materials With Internal Thermal Contact Resistance
,”
J. Porous Media
,
16
(
11
), pp.
1043
1048
.10.1615/JPorMedia.v16.i11.70
28.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.10.1016/0017-9310(69)90011-8
29.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
30.
Li
,
Z. Y.
,
Liu
,
H.
,
Zhao
,
X. P.
, and
Tao
,
W. Q.
,
2015
, “
A Multi-Level Fractal Model for the Effective Thermal Conductivity of Silica Aerogel
,”
J. Non-Cryst. Solids
,
430
, pp.
43
51
.10.1016/j.jnoncrysol.2015.09.023
31.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
, 4th ed.,
High Education Press
,
Beijing
.
32.
Prasher
,
R.
,
2006
, “
Beating the Thermal Conductivity of Air Using Packed Nanoparticle Bed
,”
ASME
Paper No. IMECE2006-14931.10.1115/IMECE2006-14931
33.
Zhu
,
C. Y.
, and
Li
,
Z. Y.
,
2018
, “
Modeling of the Apparent Solid Thermal Conductivity of Aerogel
,”
Int. J. Heat Mass Transfer
,
120
, pp.
724
730
.10.1016/j.ijheatmasstransfer.2017.12.076
34.
Mishra
,
A. K.
,
Lahiri
,
B.
, and
Philip
,
J.
,
2019
, “
Superior Thermal Conductivity and Photo-Thermal Conversion Efficiency of Carbon Black Loaded Organic Phase Change Material
,”
J. Mol. Liq.
,
285
, pp.
640
657
.10.1016/j.molliq.2019.04.132
35.
Liu
,
D. M.
, and
Lin
,
B. W.
,
1996
, “
Thermal Conductivity in Hot-Pressed Silicon Carbide
,”
Ceram. Int.
,
22
(
5
), pp.
407
414
.10.1016/0272-8842(95)00125-5
36.
Platzer
,
B.
,
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton
.
37.
Zhang
,
H.
,
Gu
,
W.
,
Li
,
M. J.
,
Li
,
Z. Y.
,
Hu
,
Z. J.
, and
Tao
,
W. Q.
,
2014
, “
Experimental Study on the Kinetics of Water Vapor Sorption on the Inner Surface of Silica Nano-Porous Materials
,”
Int. J. Heat Mass Transfer
,
78
, pp.
947
959
.10.1016/j.ijheatmasstransfer.2014.07.047
38.
Wei
,
G.
,
Liu
,
Y.
,
Zhang
,
X.
,
Yu
,
F.
, and
Du
,
X.
,
2011
, “
Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2355
2366
.10.1016/j.ijheatmasstransfer.2011.02.026
39.
Zhang
,
H.
,
Fang
,
W. Z.
,
Wang
,
X.
,
Li
,
Y. M.
, and
Tao
,
W. Q.
,
2017
, “
Thermal Conductivity of Fiber and Opacifier Loaded Silica Aerogel Composite
,”
Int. J. Heat Mass Transfer
,
115
, pp.
21
31
.10.1016/j.ijheatmasstransfer.2017.08.006
40.
Graf
,
C.
, and
van Blaaderen
,
A.
,
2002
, “
Metallodielectric Colloidal Core− Shell Particles for Photonic Applications
,”
Langmuir
,
18
(
2
), pp.
524
534
.10.1021/la011093g
41.
Akhmanov
,
S. A.
, and
Nikitin
,
S. Y.
,
1997
,
Physical Optics
,
Clarendon Press
,
Oxford
.
42.
Zeng
,
S.
,
Hunt
,
A.
, and
Greif
,
R.
,
1995
, “
Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
758
761
.10.1115/1.2822642
43.
Warrier
,
P.
,
Yuan
,
Y.
,
Beck
,
M. P.
, and
Teja
,
A. S.
,
2010
, “
Heat Transfer in Nanoparticle Suspensions: Modeling the Thermal Conductivity of Nanofluids
,”
AIChE J.
,
56
(
12
), pp.
3243
3256
.10.1002/aic.12228
44.
Yang
,
J.
,
Liu
,
J.
,
Sui
,
X. Y.
,
Liu
,
R. X.
,
Zhou
,
C. L.
,
Lv
,
Y. H.
,
Wang
,
S.
,
Wang
,
S. X.
, and
Wei
,
M. L.
,
2014
, “
Property Changes of SiO2 Aerogel on Insulation Performance Under Different Time and High Temperature Condition
,”
Key Eng. Mater.
, Trans Tech Publ., Switzerland, Vol.
602–603
, pp.
349
352
.10.4028/www.scientific.net/KEM.602-603.349
45.
Pégourié
,
B.
,
1988
, “
Optical Properties of Alpha Silicon Carbide
,”
Astron. Astrophys.
,
194
, pp.
335
339
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7681633
46.
Kischkat
,
J.
,
Peters
,
S.
,
Gruska
,
B.
,
Semtsiv
,
M.
,
Chashnikova
,
M.
,
Klinkmüller
,
M.
,
Fedosenko
,
O.
,
Machulik
,
S.
,
Aleksandrova
,
A.
,
Monastyrskyi
,
G.
,
Flores
,
Y.
, and
Ted Masselink
,
W.
,
2012
, “
Mid-Infrared Optical Properties of Thin Films of Aluminum Oxide, Titanium Dioxide, Silicon Dioxide, Aluminum Nitride, and Silicon Nitride
,”
Appl. Opt.
,
51
(
28
), pp.
6789
6798
.10.1364/AO.51.006789
47.
Zeng
,
S. Q.
,
Hunt
,
A.
, and
Greif
,
R.
,
1995
, “
Theoretical Modeling of Carbon Content to Minimize Heat Transfer in Silica Aerogel
,”
J. Non-Cryst. Solids
,
186
, pp.
271
277
.10.1016/0022-3093(95)00076-3
48.
Feng
,
J.
,
Chen
,
D.
,
Ni
,
W.
,
Yang
,
S.
, and
Hu
,
Z.
,
2010
, “
Study of IR Absorption Properties of Fumed Silica-Opacifier Composites
,”
J. Non-Cryst. Solids
,
356
(
9–10
), pp.
480
483
.10.1016/j.jnoncrysol.2009.12.015
49.
Yonathan
,
P.
,
Lee
,
J. H.
,
Yoon
,
D. H.
,
Kim
,
W. J.
, and
Park
,
J. Y.
,
2009
, “
Improvement of SiCf/SiC Density by Slurry Infiltration and Tape Stacking
,”
Mater. Res. Bull.
,
44
(
11
), pp.
2116
2122
.10.1016/j.materresbull.2009.07.004
50.
Alvarez-Guerrero
,
S.
,
Ordonez-Miranda
,
J.
,
de Coss
,
R.
, and
Alvarado-Gil
,
J. J.
,
2022
, “
Determination of the Effective Thermal Conductivity of Particulate Composites Based on VO2 and SiO2
,”
Int. J. Therm. Sci.
,
172
, p.
107278
.10.1016/j.ijthermalsci.2021.107278
51.
Lyeo
,
H. K.
,
Cahill
,
D. G.
,
Lee
,
B. S.
,
Abelson
,
J. R.
,
Kwon
,
M. H.
,
Kim
,
K. B.
,
Bishop
,
S. G.
, and
Cheong
,
B. K.
,
2006
, “
Thermal Conductivity of Phase-Change Material Ge2Sb2Te5
,”
Appl. Phys. Lett.
,
89
(
15
), p.
151904
.10.1063/1.2359354
52.
Sun
,
J.
, and
Pribil
,
G. K.
,
2017
, “
Analyzing Optical Properties of Thin Vanadium Oxide Films Through Semiconductor-to-Metal Phase Transition Using Spectroscopic Ellipsometry
,”
Appl. Surf. Sci.
,
421
, pp.
819
823
.10.1016/j.apsusc.2016.09.125
You do not currently have access to this content.