Abstract

Current additive manufacturing (AM) technologies are typically limited by the minimum feature sizes of the parts they can produce. This issue is addressed by the microscale selective laser sintering system (μ-SLS), which is capable of building parts with single micrometer resolutions. Despite the resolution of the system, the minimum feature sizes producible using the μ-SLS tool are limited by unwanted heat dissipation through the particle bed during the sintering process. To address this unwanted heat flow, a particle scale thermal model is needed to characterize the thermal conductivity of the nanoparticle bed during sintering and facilitate the prediction of heat affected zones. This would allow for the optimization of process parameters and a reduction in error for the final part. This paper presents a method for the determination of the effective thermal conductivity of copper nanoparticle beds in a μ-SLS system using finite element simulations performed in ansys. A phase field model (PFM) is used to track the geometric evolution of the particle groups within the particle bed during sintering. Computer aided design (CAD) models are extracted from the PFM output data at various time-steps, and steady-state thermal simulations are performed on each particle group. The full simulation developed in this work is scalable to particle groups with variable sizes and geometric arrangements. The particle thermal model results from this work are used to calculate the thermal conductivity of the copper nanoparticles as a function of the density of the particle group.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
, pp.
1917
1928
.10.1007/s11665-014-0958-z
2.
Sager
,
B.
, and
Rosen
,
D.
,
2002
,
Stereolithography Process Resolution
,
Georgia Institute of Technology
,
Atlanta, GA
.
3.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2019
, “
A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of Microelectronic Parts
,”
Microsyst. Nanoeng. 5
,
64
.
4.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2016
, “
Design of a Micro-Scale Selective Laser Sintering System
,”
Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 9, pp.
1495
1508
.https://www.researchgate.net/publication/318528295_Design_of_a_Microscale_Selective_Laser_Sintering_System
5.
Roy
,
N.
,
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Design and Modeling of a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2016-8569.10.1115/MSEC2016-8569
6.
Roy
,
N.
,
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2017
, “
Preliminary Results on the Fabrication of Interconnect Structures Using Microscale Selective Laser Sintering
,”
ASME
Paper No. IPACK2017-74173.10.1115/IPACK2017-74173
7.
Nelson
,
C.
,
McAlea
,
K.
, and
Gray
,
D.
,
1995
, “
Improvements in SLS Part Accuracy
,”
Annual International Solid Freeform Fabrication Symposium
, Austin, TX, 1995, pp.
159
169
.
8.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.10.1016/j.jmatprotec.2008.02.040
9.
Moser
,
D.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2016
, “
Particle-Scale Melt Modeling of the Selective Laser Melting Process
,”
Annual International Solid Freeform Fabrication Symposium
, Austin, TX, 2016, pp.
247
256
.
10.
Moser
,
D.
,
Fish
,
S.
,
Beaman
,
J.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME
Paper No. IMECE2014-37535.10.1115/IMECE2014-37535
11.
Dibua
,
O. G.
,
Yuksela
,
A.
,
Roya
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Sintering Model, Simulation and Calibration Against Experimental Data
,”
ASME
Paper No. MSEC2018-6383.10.1115/MSEC2018-6383
12.
Yuksel
,
A.
,
Yu
,
E. T.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2020
, “
Investigation of Heat Transfer Modes in Plasmonic Nanoparticles
,”
Int. J. Heat Mass Transfer
,
156
, p.
119869
.10.1016/j.ijheatmasstransfer.2020.119869
13.
Batchelor
,
G. K.
, and
O'Brien
,
R. W.
,
1977
, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London Ser. A Math. Phys. Sci.
,
355
, pp.
313
333
.https://doi.org/10.1098/rspa.1977.0100
14.
Sun
,
J.
, and
Chen
,
M. M.
,
1988
, “
A Theoretical Analysis of Heat Transfer Due to Particle Impact
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp.
969
975
.10.1016/0017-9310(88)90085-3
15.
Zhou
,
J. H.
,
Yu
,
A. B.
, and
Horio
,
M.
,
2008
, “
Finite Element Modeling of the Transient Heat 150 Conduction Between Colliding Particles
,”
Chem. Eng. J.
,
139
(
3
), pp.
510
516
.10.1016/j.cej.2007.08.024
16.
Shimizu
,
Y.
,
2006
, “
Three-Dimensional Simulation Using Fixed Coarse-Grid Thermal-Fluid Scheme and Conduction Heat Transfer Scheme in Distinct Element Method
,”
Powder Technol.
,
165
(
3
), pp.
140
152
.10.1016/j.powtec.2006.04.003
17.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2012
, “
A 3-D Numerical Heat Transfer Model for Silica Aerogels Based on the Porous Secondary Nanoparticle Aggregate Structure
,”
J. Non-Cryst. Solids
,
358
(
10
), pp.
1287
1297
.10.1016/j.jnoncrysol.2012.02.035
18.
Guo
,
J. F.
, and
Tang
,
G. H.
,
2019
, “
A Theoretical Model for Gas- Contributed Thermal Conductivity in Nanoporous Aerogels
,”
Int. J. Heat Mass Transfer
,
137
, pp.
64
73
.10.1016/j.ijheatmasstransfer.2019.03.106
19.
Wu
,
D.
, and
Huang
,
C.
,
2020
, “
Thermal Conductivity Study of SiC Nanoparticle Beds for Thermal Insulation Applications
,”
Phys. E
,
118
, p.
113970
.10.1016/j.physe.2020.113970
20.
Lin
,
Z.
,
Huang
,
C. L.
,
Zhen
,
W. K.
, and
Huang
,
Z.
,
2017
, “
Enhanced Thermal Conductivity of Metallic Nanoparticle Packed Bed by Sintering Treatment
,”
Appl. Therm. Eng.
,
119
, pp.
425
429
.10.1016/j.applthermaleng.2017.03.087
21.
Qin
,
F.
,
Hu
,
Y.
,
Dai
,
Y.
,
An
,
T.
, and
Chen
,
P.
,
2020
, “
Evaluation of Thermal Conductivity for Sintered Silver Considering Aging Effect With Microstructure Based Model
,”
Microelectron. Reliab.
,
108
, p.
113633
.10.1016/j.microrel.2020.113633
22.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element- Finite Difference Model of Selective Laser Sintering
,”
Gran. Matter
,
18
(
2
), p.
21
.10.1007/s10035-016-0626-0
23.
Moser
,
D.
,
Pannala
,
S.
, and
Murthy
,
J.
,
2016
, “
Computation of Effective Thermal Conductivity of Powders for Selective Laser Sintering Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p.
082002
.10.1115/1.4033351
24.
Moser
,
D.
,
Yuksel
,
A.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2018
, “
Use of Detailed Particle Melt Modeling to Calculate Effective Melt Properties for Powders
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
5
), p.
052301
.10.1115/1.4038423
25.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
J. Addit. Manuf.
,
12
, pp.
204
215
.10.1016/j.addma.2016.07.002
26.
Li
,
Y.
, and
Gu
,
D.
,
2014
, “
Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Powder
,”
Mater. Des.
,
63
, pp.
856
867
.10.1016/j.matdes.2014.07.006
27.
Ancellotti
,
S.
,
Fontanari
,
V.
,
Molinari
,
A.
,
Iacob
,
E.
,
Bellutti
,
P.
,
Luchin
,
V.
,
Zappini
,
G.
, and
Benedetti
,
M.
,
2019
, “
Numerical/Experimental Strategies to Infer Enhanced Liquid Thermal Conductivity and Roughness in Laser Powder-Bed Fusion Processes
,”
J. Addit. Manuf.
,
27
, pp.
552
564
.10.1016/j.addma.2019.04.007
28.
Dibua
,
O.
,
Yuksel
,
A.
,
Roy
,
N.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Sintering Model, Simulation and Calibration Against Experimental Data
,”
ASME J. Micro Nanomanuf.
,
6
, p.
041004
.
29.
Yuksel
,
A.
,
Yu
,
E. T.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2020
, “
Thermal Transport in Nanoparticle Packings Under Laser Irradiation
,”
ASME J. Heat Transfer-Trans. ASME
,
142
, p.
032501
.10.1115/1.4045731
30.
Zheng
,
H.
, and
Jagannadham
,
K.
,
2014
, “
Interface Thermal Conductance Between Metal Films and Copper
,”
Miner., Met. Mater. Soc. ASM Int.
,
58
(
6
), pp.
67
74
.
You do not currently have access to this content.