Abstract

Evaporation of working fluids inside capillary wicks determines the heat transfer capability of heat pipes. However, the relationship between wick parameters and evaporative heat transfer remains unclear. To establish a correlation between wick parameters of sintered porous particles and evaporation characteristics, a boundary condition model was developed, incorporating wick parameters such as particle radius (R), particle distance (d), apparent contact angle (θa), and initial liquid height (H). In the absence of a significant size effect, the profile of the liquid–vapor interface was determined using the boundary model by numerically solving the augmented Young–Laplace equation. Ammonia was used as an example to investigate evaporation characteristics. The curvature radius of the intrinsic meniscus (Re) was found to serve as a bridging factor between these wick parameters and evaporation characteristics. When Re exceeded 40.3 μm, a limitation in evaporative heat transfer within the thin film region was observed. The relationship between R, d, θa, and H was quantitatively described based on this evaporative heat transfer limit. Furthermore, a nondimensional analysis of the governing equation for the evaporating liquid film profile was conducted, yielding an influencing factor (λ) that governed the thin film profile. The proposed model and its outcomes could offer valuable theoretical insights for the structural design of sintered porous particles, the optimization of surface modification levels, and the determination of the appropriate working fluid charging ratio during the manufacturing process of heat pipes.

References

1.
Ueno
,
A.
,
Tomita
,
S.
, and
Nagano
,
H.
,
2021
, “
Experimental Investigation on a Thin-Loop Heat Pipe With New Evaporator Structure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p. 0
61901
.10.1115/1.4050405
2.
Yan
,
Y.
,
Zheng
,
Y.
,
Sun
,
H.
, and
Duan
,
J. A.
,
2021
, “
Review of Issues and Solutions in High-Power Semiconductor Laser Packaging Technology
,”
Front. Phys.
,
9
, p.
669591
.10.3389/fphy.2021.669591
3.
Chen
,
Q.
,
Zhang
,
G.
,
Zhang
,
X.
,
Sun
,
C.
,
Jiao
,
K.
, and
Wang
,
Y.
,
2021
, “
Thermal Management of Polymer Electrolyte Membrane Fuel Cells: A Review of Cooling Methods, Material Properties, and Durability
,”
Appl. Energy
,
286
, p.
116496
.10.1016/j.apenergy.2021.116496
4.
Wang
,
J.
,
Li
,
Y.
,
Liu
,
X.
,
Shen
,
C.
,
Zhang
,
H.
, and
Xiong
,
K.
,
2021
, “
Recent Active Thermal Management Technologies for the Development of Energy-Optimized Aerospace Vehicles in China
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
1
27
.10.1016/j.cja.2020.06.021
5.
Wong
,
S.
, and
Liao
,
W.
,
2018
, “
Visualization Experiments on Flat-Plate Heat Pipes With Composite Mesh-Groove Wick at Different Tilt Angles
,”
Int. J. Heat Mass Transfer
,
123
, pp.
839
847
.10.1016/j.ijheatmasstransfer.2018.03.031
6.
Yamada
,
Y.
,
Nishikawara
,
M.
,
Yanada
,
H.
, and
Ueda
,
Y.
,
2019
, “
Predicting the Performance of a Loop Heat Pipe Considering Evaporation From the Meniscus at the Three-Phase Contact Line
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
125
132
.10.1016/j.tsep.2019.03.022
7.
Jo
,
J.
,
Kim
,
J.
, and
Kim
,
S. J.
,
2019
, “
Experimental Investigations of Heat Transfer Mechanisms of a Pulsating Heat Pipe
,”
Energy Convers. Manage.
,
181
, pp.
331
341
.10.1016/j.enconman.2018.12.027
8.
Adera
,
S.
,
Antao
,
D.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Design of Micropillar Wicks for Thin-Film Evaporation
,”
Int. J. Heat Mass Transfer
,
101
, pp.
280
294
.10.1016/j.ijheatmasstransfer.2016.04.107
9.
Soma
,
S.
, and
Kunugi
,
T.
,
2017
, “
Water Evaporation in Parallel Plates
,”
Int. J. Heat Mass Transfer
,
110
, pp.
778
782
.10.1016/j.ijheatmasstransfer.2017.03.085
10.
Mehrizi
,
A. A.
, and
Wang
,
H.
,
2018
, “
Evaporation-Induced Receding Contact Lines in Partial-Wetting Regime on a Heated Substrate
,”
Int. J. Heat Mass Transfer
,
124
, pp.
279
287
.10.1016/j.ijheatmasstransfer.2018.03.066
11.
Potash
,
M.
, and
Wayner
,
P. C.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1851
1863
.10.1016/0017-9310(72)90058-0
12.
Park
,
K.
,
Noh
,
K.
, and
Lee
,
K.
,
2003
, “
Transport Phenomena in the Thin-Film Region of a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
46
(
13
), pp.
2381
2388
.10.1016/S0017-9310(02)00541-0
13.
Narayanan
,
S.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2011
, “
Interfacial Transport of Evaporating Water Confined in Nanopores
,”
Langmuir
,
27
(
17
), pp.
10666
10676
.10.1021/la201807a
14.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
15.
Yan
,
C.
, and
Ma
,
H. B.
,
2013
, “
Analytical Solutions of Heat Transfer and Film Thickness in Thin-Film Evaporation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
3
), p.
031501
.10.1115/1.4007856
16.
Batzdorf
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2018
, “
Direct Numerical Simulation of the Microscale Fluid Flow and Heat Transfer in the Three-Phase Contact Line Region During Evaporation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
3
), p.
032401
.10.1115/1.4038191
17.
Ajaev
,
S. V.
, and
Kabov
,
O. A.
,
2017
, “
Heat and Mass Transfer Near Contact Lines on Heated Surfaces
,”
Int. J. Heat Mass Transfer
,
108
, pp.
918
932
.10.1016/j.ijheatmasstransfer.2016.11.079
18.
Hu
,
H.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Role of Nanoscale Roughness in the Heat Transfer Characteristics of Thin Film Evaporation
,”
Int. J. Heat Mass Transfer
,
150
, p.
119306
.10.1016/j.ijheatmasstransfer.2020.119306
19.
Chen
,
X.
,
Qi
,
C.
,
Wang
,
W.
,
Miao
,
J.
, and
Zhang
,
H.
,
2022
, “
Theoretical Analysis of Cryogenic Fluid Evaporation in Sintered Microporous Structures
,”
Microgravity Sci. Technol.
,
34
(
2
), p.
14
.10.1007/s12217-022-09932-9
20.
Zhao
,
Y. N.
,
Wang
,
N.
,
Yan
,
T.
,
Liang
,
J.
, and
Chen
,
H.
,
2021
, “
Experimental Study on Operating Characteristics of a Cryogenic Loop Heat Pipe Without Additional Power Consumption
,”
Appl. Therm. Eng.
,
184
, p.
116262
.10.1016/j.applthermaleng.2020.116262
21.
Mo
,
J.
,
Sha
,
J.
,
Li
,
D.
,
Li
,
Z.
, and
Chen
,
Y.
,
2019
, “
Fluid Release Pressure for Nanochannels: The Young-Laplace Equation Using the Effective Contact Angle
,”
Nanoscale
,
11
(
17
), pp.
8408
8415
.10.1039/C8NR08987F
22.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
23.
Chen
,
X.
,
Qi
,
C.
,
Wang
,
W.
,
Miao
,
J.
, and
Zhang
,
H.
,
2022
, “
Investigation of Interface Profiles in Meshed Wicks and Related Evaporation Characteristics
,”
Int. J. Therm. Sci.
,
177
, p.
107522
.10.1016/j.ijthermalsci.2022.107522
24.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2011
, “
A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
169
179
.10.1016/j.ijheatmasstransfer.2010.09.037
25.
Ehrig
,
S.
,
Schamberger
,
B.
,
Bidan
,
C. M.
,
West
,
A.
,
Jacobi
,
C.
,
Lam
,
K.
,
Kollmannsberger
,
P.
,
Petersen
,
A.
,
Tomancak
,
P.
,
Kommareddy
,
K.
,
Fischer
,
F. D.
,
Fratzl
,
P.
, and
Dunlop
,
J. W. C.
,
2019
, “
Surface Tension Determines Tissue Shape and Growth Kinetics
,”
Sci. Adv.
,
5
(
9
), p.
eaav9394
.10.1126/sciadv.aav9394
26.
Liao
,
J.
, and
Majidi
,
C.
,
2022
, “
Muscle-Inspired Linear Actuators by Electrochemical Oxidation of Liquid Metal Bridges
,”
Adv. Sci.
,
9
(
26
), p.
2201963
.10.1002/advs.202201963
27.
Patnaik
,
L.
,
Maity
,
S. R.
, and
Kumar
,
S.
,
2021
, “
Modeling of Wear Parameters and Multi-Criteria Optimization by Box-Behnken Design of AlCrN Thin Film Against Gamma-Irradiated Ti6Al4V Counterbody
,”
Ceram. Int.
,
47
(
14
), pp.
20494
20511
.10.1016/j.ceramint.2021.04.059
28.
Umar
,
H. A.
, and
Sulaiman
,
S. A.
,
2022
, “
Parametric Optimisation Through the Use of Box-Behnken Design in the Co-Gasification of Oil Palm Trunk and Frond for Syngas Production
,”
Fuel
,
310
, p.
122234
.10.1016/j.fuel.2021.122234
29.
Polat
,
S.
, and
Sayan
,
P.
,
2019
, “
Application of Response Surface Methodology With a Box–Behnken Design for Struvite Precipitation
,”
Adv. Powder Technol.
,
30
(
10
), pp.
2396
2407
.10.1016/j.apt.2019.07.022
30.
Hu
,
H.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2019
, “
A Coupled Wicking and Evaporation Model for Prediction of Pool Boiling Critical Heat Flux on Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
136
, pp.
373
382
.10.1016/j.ijheatmasstransfer.2019.03.005
31.
Tsai
,
Y.
, and
Lee
,
C.
,
2014
, “
Experimental Study of Evaporative Heat Transfer in Sintered Powder Structures at Low Superheat Levels
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
230
238
.10.1016/j.expthermflusci.2013.09.016
32.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
33.
Ozsipahi
,
M.
,
Akkus
,
Y.
, and
Beskok
,
A.
,
2022
, “
Surface Wettability Effects on Evaporating Meniscus in Nanochannels
,”
Int. Commun. Heat Mass Transfer
,
136
, p.
106166
.10.1016/j.icheatmasstransfer.2022.106166
34.
Yu
,
Z.
,
Gu
,
R.
,
Tian
,
Y.
,
Xie
,
P.
,
Jin
,
B.
, and
Cheng
,
S.
,
2022
, “
Enhanced Interfacial Solar Evaporation Through Formation of Micro-Meniscuses and Microdroplets to Reduce Evaporation Enthalpy
,”
Adv. Funct. Mater.
,
32
(
17
), p.
2108586
.10.1002/adfm.202108586
35.
Guo
,
H.
,
Ji
,
X.
, and
Xu
,
J.
,
2020
, “
Enhancement of Loop Heat Pipe Heat Transfer Performance With Superhydrophilic Porous Wick
,”
Int. J. Therm. Sci.
,
156
, p.
106466
.10.1016/j.ijthermalsci.2020.106466
36.
Luo
,
Q.
,
Wu
,
G.
,
Ji
,
B.
,
Wang
,
L.
, and
Suganthan
,
P. N.
,
2022
, “
Hybrid Multi-Objective Optimization Approach With Pareto Local Search for Collaborative Truck-Drone Routing Problems Considering Flexible Time Windows
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
8
), pp.
13011
13025
.10.1109/TITS.2021.3119080
37.
Poudel
,
S.
,
Zou
,
A.
, and
Maroo
,
S. C.
,
2022
, “
Disjoining Pressure Driven Transpiration of Water in a Simulated Tree
,”
J. Colloid Interface Sci.
,
616
, pp.
895
902
.10.1016/j.jcis.2022.02.108
You do not currently have access to this content.