Abstract

In this paper, the effect of perforated twisted tape insert (PTTI)-based heat exchanger (HX) utilizing nanofluid as working fluid undercooling, turbulent flow model has been investigated numerically. Parameters, i.e., nanofluid mass flow rates (0.018–0.038 kg/s), perforated pitches (20 mm–40 mm), and perforated diameters (2 mm–4 mm) variation effects on fluid outlet temperature, Nusselt ratio, Friction ratio, pressure drop, overall thermal performance, CO2 discharge, and heat exchanger operating cost (HXOC) have been investigated. This work also focuses on design optimization with three different factors and three levels for higher heat transfer coefficient (HTC) and minimum pressure drop based on the Taguchi–Grey method. Computational fluid dynamics (CFD) output is used as an input value for statistical analysis. Results revealed that the PTTI in HX successfully achieved overall heat transfer enhancement in the range of 19.2% to 28.5%, but at the cost of pressure penalty of 126% to 163% higher than the plain tube. Critical Reynolds number 7927, above which PTTI in HX is least suitable for heat transfer enhancement as fluid velocity dominates over heat transfer and 1.7–2.5 times higher carbon discharge to the environment and HXOC. Preference sets of geometrical and fluid parameters are obtained using Grey analysis. Based on statistical analysis, in the considered levels, a group of parameters to attain higher HTC and minimum pressure drop are mass flow rate of 0.018 kg/s, a perforated pitch of 20 mm, and a perforated diameter of 4 mm.

References

1.
Bergles
,
A. E.
,
2001
, “
The Implications and Challenges of Enhanced Heat Transfer for the Chemical Process Industries
,”
Chem. Eng. Res. Des.
,
79
(
4
), pp.
437
444
.10.1205/026387601750282562
2.
Bucak
,
H.
, and
Yılmaz
,
F.
,
2020
, “
The Current State on the Thermal Performance of Twisted Tapes: A Geometrical Categorisation Approach
,”
Chem. Eng. Process.
,
153
(
1
), p.
107929
.10.1016/j.cep.2020.107929
3.
Naik
,
M. T.
,
Fahad
,
S. S.
,
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2014
, “
Comparative Study on Thermal Performance of Twisted Tape and Wire Coil Inserts in Turbulent Flow Using CuO/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
57
(
1
), pp.
65
76
.10.1016/j.expthermflusci.2014.04.006
4.
Akhavan-Behabadi
,
M. A.
,
Kumar
,
R.
, and
Rajabi-Najar
,
A.
,
2008
, “
Augmentation of Heat Transfer by Twisted Tape Inserts During Condensation of R-134a Inside a Horizontal Tube
,”
Heat Mass Transf.
,
44
(
6
), pp.
651
657
.10.1007/s00231-007-0297-9
5.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2003
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
,
36
(
1
), pp.
183
266
.10.1016/S0065-2717(02)80007-7
6.
Eiamsa-Ard
,
S.
,
Thianpong
,
C.
,
Eiamsa-Ard
,
P.
, and
Promvonge
,
P.
,
2010
, “
Thermal Characteristics in a Heat Exchanger Tube Fitted With Dual Twisted Tape Elements in Tandem
,”
Int. Comm. Heat Mass Transfer
,
37
(
1
), pp.
39
46
.10.1016/j.icheatmasstransfer.2009.08.010
7.
Eiamsa-Ard
,
S.
,
Seemawute
,
P.
, and
Wongcharee
,
K.
,
2010
, “
Influences of Peripherally-Cut Twisted Tape Insert on Heat Transfer and Thermal Performance Characteristics in Laminar and Turbulent Tube Flows
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
711
719
.10.1016/j.expthermflusci.2009.12.013
8.
Chu
,
W. X.
,
Tsai
,
C. A.
,
Lee
,
B. H.
,
Cheng
,
K. Y.
, and
Wang
,
C. C.
,
2020
, “
Experimental Investigation on Heat Transfer Enhancement With Twisted Tape Having Various V-Cut Configurations
,”
Appl. Therm. Eng.
,
172
(
1
), p.
115148
.10.1016/j.applthermaleng.2020.115148
9.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Effect of Discontinuous Helical Turbulators on Heat Transfer Characteristics of Double Pipe Water to Air Heat Exchanger
,”
Energy Conv. Manag.
,
118
(
1
), pp.
75
87
.10.1016/j.enconman.2016.03.080
10.
Nanan
,
K.
,
Thianpong
,
C.
,
Promvonge
,
P.
, and
Eiamsa-Ard
,
S.
,
2014
, “
Investigation of Heat Transfer Enhancement by Perforated Helical Twisted-Tapes
,”
Int. Comm. Heat Mass Transfer
,
52
(
1
), pp.
106
112
.10.1016/j.icheatmasstransfer.2014.01.018
11.
Qi
,
C.
,
Fan
,
F.
,
Pan
,
Y.
,
Liu
,
M.
, and
Yan
,
Y.
,
2020
, “
Effects of Turbulator With Round Hole on the Thermo-Hydraulic Performance of Nanofluids in a Triangle Tube
,”
Int. J. Heat Mass Transfer
,
146
(
1
), p.
118897
.10.1016/j.ijheatmasstransfer.2019.118897
12.
Qi
,
C.
,
Liu
,
M.
, and
Tang
,
J.
,
2019
, “
Influence of Triangle Tube Structure With Twisted Tape on the Thermo-Hydraulic Performance of Nanofluids in Heat-Exchange System Based on Thermal and Exergy Efficiency
,”
Energy Conv. Manag.
,
192
(
1
), pp.
243
268
.10.1016/j.enconman.2019.04.047
13.
Murugesan
,
P.
,
Mayilsamy
,
K.
,
Suresh
,
S.
, and
Srinivasan
,
P. S. S.
,
2011
, “
Heat Transfer and Pressure Drop Characteristics in a Circular Tube Fitted With and Without V-Cut Twisted Tape Insert
,”
Int. Comm. Heat Mass Transfer
,
38
(
3
), pp.
329
334
.10.1016/j.icheatmasstransfer.2010.11.010
14.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2010
, “
Turbulent Heat Transfer and Pressure Drop in Tube Fitted With Square-Cut Twisted Tape
,”
Chin. J. Chem. Eng.
,
18
(
4
), pp.
609
617
.10.1016/S1004-9541(10)60264-9
15.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2011
, “
Heat Transfer in Tubes Fitted With Trapezoidal-Cut and Plain Twisted Tape Inserts
,”
Chem. Eng Comm.
,
198
(
7
), pp.
886
904
.10.1080/00986445.2011.545294
16.
Sajadi
,
B.
,
Soleimani
,
M.
,
Akhavan-Behabadi
,
M. A.
, and
Hadadi
,
E.
,
2020
, “
The Effect of Twisted Tape Inserts on Heat Transfer and Pressure Drop of R1234yf Condensation Flow: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
146
(
1
), p.
118890
.10.1016/j.ijheatmasstransfer.2019.118890
17.
Wijayanta
,
A. T.
, and
Aziz
,
M.
,
2020
, “
Heat Transfer Augmentation of Internal Flow Using Twisted Tape Insert in Turbulent Flow
,”
Heat Transfer Eng.
,
41
(
14
), pp.
1288
1300
.10.1080/01457632.2019.1637149
18.
Suri
,
A. R. S.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Heat Transfer Enhancement of Heat Exchanger Tube With Multiple Square Perforated Twisted Tape Inserts: Experimental Investigation and Correlation Development
,”
Chem. Eng. Process.
,
116
(
1
), pp.
76
96
.10.1016/j.cep.2017.02.014
19.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2019
, “
Numerical Investigation of Turbulent Cu-Water Nanofluid in Heat Exchanger Tube Equipped With Perforated Conical Rings
,”
Adv. Powder Technol.
,
30
(
7
), pp.
1338
1347
.10.1016/j.apt.2019.04.009
20.
Nakhchi
,
M. E.
, and
Esfahani
,
J. A.
,
2020
, “
CFD Approach for Two-Phase CuO Nanofluid Flow Through Heat Exchangers Enhanced by Double Perforated Louvered Strip Insert
,”
Powder Technol.
,
367
(
1
), pp.
877
888
.10.1016/j.powtec.2020.04.043
21.
Dagdevir
,
T.
, and
Ozceyhan
,
V.
,
2021
, “
An Experimental Study on Heat Transfer Enhancement and Flow Characteristics of a Tube With Plain, Perforated and Dimpled Twisted Tape Inserts
,”
Int. J Therm. Sci.
,
159
(
1
), p.
106564
.10.1016/j.ijthermalsci.2020.106564
22.
Ponnada
,
S.
,
Subrahmanyam
,
T.
, and
Naidu
,
S. V.
,
2019
, “
A Comparative Study on the Thermal Performance of Water in a Circular Tube With Twisted Tapes, Perforated Twisted Tapes and Perforated Twisted Tapes With Alternate Axis
,”
Int. J. Therm. Sci.
,
136
(
1
), pp.
530
538
.10.1016/j.ijthermalsci.2018.11.008
23.
Eiamsa-Ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-Ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Heat Transfer Enhancement in a Tube Using Delta-Winglet Twisted Tape Inserts
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
310
318
.10.1016/j.applthermaleng.2009.09.006
24.
Eiamsa-Ard
,
S.
,
Wongcharee
,
K.
,
Eiamsa-Ard
,
P.
, and
Thianpong
,
C.
,
2010
, “
Thermohydraulic Investigation of Turbulent Flow Through a Round Tube Equipped With Twisted Tapes Consisting of Centre Wings and Alternate-Axes
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1151
1161
.10.1016/j.expthermflusci.2010.04.004
25.
Akhavan-Behabadi
,
M. A.
,
Kumar
,
R.
,
Mohammadpour
,
A.
, and
Jamali-Asthiani
,
M.
,
2009
, “
Effect of Twisted Tape Insert on Heat Transfer and Pressure Drop in Horizontal Evaporators for the Flow of R-134a
,”
Int. J. Refrig.
,
32
(
5
), pp.
922
930
.10.1016/j.ijrefrig.2008.11.004
26.
Moravej
,
M.
,
Bozorg
,
M. V.
,
Guan
,
Y.
,
Li
,
L. K.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
Enhancing the Efficiency of a Symmetric Flat-Plate Solar Collector Via the Use of Rutile TiO2-Water Nanofluids
,”
Sustainable Energy Technol. Assess.
,
40
(
1
), p.
100783
.10.1016/j.seta.2020.100783
27.
Hussein
,
O. A.
,
Habib
,
K.
,
Muhsan
,
A. S.
,
Saidur
,
R.
,
Alawi
,
O. A.
, and
Ibrahim
,
T. K.
,
2020
, “
Thermal Performance Enhancement of a Flat Plate Solar Collector Using Hybrid Nanofluid
,”
Sol. Energy
,
204
(
1
), pp.
208
222
.10.1016/j.solener.2020.04.034
28.
Goodarzi
,
M.
,
Tlili
,
I.
,
Tian
,
Z.
, and
Safaei
,
M. R.
,
2019
, “
Efficiency Assessment of Using Graphene Nanoplatelets-Silver/Water Nanofluids in Microchannel Heat Sinks With Different Cross-Sections for Electronics Cooling
,”
Int. J. Num. Meth. Heat Fluid Flow
,
30
(
1
), pp. 347–372.10.1108/HFF-12-2018-0730
29.
Ambreen
,
T.
,
Saleem
,
A.
,
Ali
,
H. M.
,
Shehzad
,
S. A.
, and
Park
,
C. W.
,
2019
, “
Performance Analysis of Hybrid Nanofluid in a Heat Sink Equipped With Sharp and Streamlined Micro Pin-Fins
,”
Powder Technol.
,
355
(
2
), pp.
552
563
.10.1016/j.powtec.2019.07.087
30.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Exergy and Energy Performance for Wavy Fin Radiator With a New Coolant of Various Shape Nanoparticle-Based Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
3911
3922
.10.1007/s10973-020-09361-z
31.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2021
, “
Experimental and Numerical Study on Cooling System Waste Heat Recovery for Engine Air Preheating by Ternary Hybrid Nanofluid
,”
J. Enhanc. Heat Transfer
,
28
(
4
), pp.
1
29
.10.1615/JEnhHeatTransf.2020035491
32.
Sahu
,
M.
, and
Sarkar
,
J.
,
2019
, “
Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop With Hybrid Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
8
), p. 082401.10.1115/1.4043819
33.
Goudarzi
,
K.
, and
Jamali
,
H.
,
2017
, “
Heat Transfer Enhancement of Al2O3-EG Nanofluid in a Car Radiator With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
118
(
1
), pp.
510
517
.10.1016/j.applthermaleng.2017.03.016
34.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2021
, “
Impact of Novel Dissimilar Shape Ternary Composition-Based Hybrid Nanofluids on the Thermal Performance Analysis of Radiator
,”
ASME J. Therm. Sci. Eng. Appl.-Trans. ASME
,
13
(
4
), p.
041002
.10.1115/1.4048668
35.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2020
, “
Development of a New Correlation to Determine the Viscosity of Ternary Hybrid Nanofluid
,”
Int. Comm. Heat Mass Transfer
,
111
(
1
), p.
104451
.10.1016/j.icheatmasstransfer.2019.104451
36.
Salman
,
S. D.
,
Kadhum
,
A. A. H.
,
Takriff
,
M. S.
, and
Mohamad
,
A. B.
,
2013
, “
Numerical Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube Fitted With V-Cut Twisted Tape Inserts
,”
Sci. World. J.
,
2013
(
1
), pp.
1
8
.10.1155/2013/492762
37.
Rashidi
,
S.
,
Akbarzadeh
,
M.
,
Karimi
,
N.
, and
Masoodi
,
R.
,
2018
, “
Combined Effects of Nanofluid and Transverse Twisted-Baffles on the Flow Structures, Heat Transfer and Irreversibilities Inside a Square Duct–a Numerical Study
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
135
148
.10.1016/j.applthermaleng.2017.11.048
38.
Saedodin
,
S.
,
Zaboli
,
M.
, and
Rostamian
,
S. H.
,
2020
, “
Effect of Twisted Turbulator and Various Metal Oxide Nanofluids on the Thermal Performance of a Straight Tube: Numerical Study Based on Experimental Data
,”
Chem. Eng. Process.
,
158
(
1
), p.
108106
.10.1016/j.cep.2020.108106
39.
Ramalingam
,
S.
,
Dhairiyasamy
,
R.
, and
Govindasamy
,
M.
,
2020
, “
Assessment of Heat Transfer Characteristics and System Physiognomies Using Hybrid Nanofluids in an Automotive Radiator
,”
Chem. Eng. Process.
,
150
(
1
), p.
107886
.10.1016/j.cep.2020.107886
40.
Esmaeilzadeh
,
E.
,
Almohammadi
,
H.
,
Nokhosteen
,
A.
,
Motezaker
,
A.
, and
Omrani
,
A. N.
,
2014
, “
Study on Heat Transfer and Friction Factor Characteristics of γ-Al2O3/Water Through Circular Tube With Twisted Tape Inserts With Different Thicknesses
,”
Int. J Therm. Sci.
,
82
(
1
), pp.
72
83
.10.1016/j.ijthermalsci.2014.03.005
41.
Singh
,
S. K.
, and
Sarkar
,
J.
,
2021
, “
Improving Hydrothermal Performance of Double-Tube Heat Exchanger With Modified Twisted Tape Inserts Using Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4287
4298
.10.1007/s10973-020-09380-w
42.
Eiamsa-Ard
,
S.
,
Wongcharee
,
K.
,
Kunnarak
,
K.
,
Kumar
,
M.
, and
Chuwattabakul
,
V.
,
2019
, “
Heat Transfer Enhancement of TiO2-Water Nanofluid Flow in Dimpled Tube With Twisted Tape Insert
,”
Heat Mass Transfer
,
55
(
10
), pp.
2987
3001
.10.1007/s00231-019-02621-1
43.
Bhuiya
,
M. M. K.
,
Chowdhury
,
M. S. U.
,
Saha
,
M.
, and
Islam
,
M. T.
,
2013
, “
Heat Transfer and Friction Factor Characteristics in Turbulent Flow Through a Tube Fitted With Perforated Twisted Tape Inserts
,”
Int. Comm. Heat Mass Transfer
,
46
(
1
), pp.
49
57
.10.1016/j.icheatmasstransfer.2013.05.012
44.
Bas
,
H.
, and
Ozceyhan
,
V.
,
2014
, “
Optimization of Parameters for Heat Transfer and Pressure Drop in a Tube With Twisted Tape Inserts by Using Taguchi Method
,”
Arab. J. Sci. Eng.
,
39
(
2
), pp.
1177
1186
.10.1007/s13369-013-0648-4
45.
Kundu
,
B.
, and
Barman
,
D.
,
2011
, “
An Analytical Prediction for Performance and Optimization of an Annular Fin Assembly of Trapezoidal Profile Under Dehumidifying Conditions
,”
Energy
,
36
(
5
), pp.
2572
2588
.10.1016/j.energy.2011.01.052
46.
Hsieh
,
C. T.
, and
Jang
,
J. Y.
,
2012
, “
Parametric Study and Optimization of Louver Finned-Tube Heat Exchangers by Taguchi Method
,”
Appl. Therm. Eng.
,
42
(
1
), pp.
101
110
.10.1016/j.applthermaleng.2012.03.003
47.
Wang
,
H.
,
Liu
,
Y. W.
,
Yang
,
P.
,
Wu
,
R. J.
, and
He
,
Y. L.
,
2016
, “
Parametric Study and Optimization of H-Type Finned Tube Heat Exchangers Using Taguchi Method
,”
Appl. Therm. Eng.
,
103
(
1
), pp.
128
138
.10.1016/j.applthermaleng.2016.03.033
48.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Exergoeconomic, Enviroeconomicand Sustainability Analyses of a Novel Air Cooler
,”
Energy Build.
,
55
(
1
), pp.
747
756
.10.1016/j.enbuild.2012.03.024
49.
Kashyap
,
S.
,
Sarkar
,
J.
, and
Kumar
,
A.
,
2020
, “
Exergy, Economic, Environmental and Sustainability Analyses of Possible Regenerative Evaporative Cooling Device Topologies
,”
Build. Environ.
,
180
(
1
), p.
107033
.10.1016/j.buildenv.2020.107033
50.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2022
, “
Parametric and Design Optimization Investigation of a Wavy Fin and Tube Air Heat Exchanger Using the T‐G Technique
,”
Heat Transfer
,
51
(
5
), pp.
4641
4666
.10.1002/htj.22516
51.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
7
th ed.,
McGraw-Hill
,
New York
.
52.
Kola
,
P. V. K. V.
,
Pisipaty
,
S. K.
,
Mendu
,
S. S.
, and
Ghosh
,
R.
,
2021
, “
Optimization of Performance Parameters of a Double Pipe Heat Exchanger With Cut Twisted Tapes Using CFD and RSM
,”
Chem. Eng. Process.
,
163
(
1
), p.
108362
.10.1016/j.cep.2021.108362
53.
Eiamsa-Ard
,
S.
,
Wongcharee
,
K.
, and
Sripattanapipat
,
S.
,
2009
, “
3-D Numerical Simulation of Swirling flow and convective Heat Transfer in a Circular Tube Induced by Means of Loose-Fit Twisted Tapes
,”
Int. Comm. Heat Mass Transfer
,
36
(
9
), pp.
947
955
.10.1016/j.icheatmasstransfer.2009.06.014
54.
Abed
,
A. M.
,
Majdi
,
H. S.
,
Hussein
,
Z.
,
Fadhil
,
D.
, and
Abdulkadhim
,
A.
,
2018
, “
Numerical Analysis of Flow and Heat Transfer Enhancement in a Horizontal Pipe With P-TT and V-Cut Twisted Tape
,”
Case Stud. Therm. Eng.
,
12
(
1
), pp.
749
758
.10.1016/j.csite.2018.10.004
55.
Li
,
Z.
,
Sheikholeslami
,
M.
,
Jafaryar
,
M.
,
Shafee
,
A.
, and
Chamkha
,
A. J.
,
2018
, “
Investigation of Nanofluid Entropy Generation in a Heat Exchanger With Helical Twisted Tapes
,”
J. Moll. Liqs.
,
266
(
1
), pp.
797
805
.10.1016/j.molliq.2018.07.009
56.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
(
1
), pp.
503
564
.10.1016/S0065-2717(08)70153-9
You do not currently have access to this content.