Abstract

In this work, rarefaction effect, heat transfer, and drag coefficient for gas flow around a square cylinder in transition flow regime are numerically studied using unified gas kinetic scheme (UGKS). To reduce computational cost, a mirror symmetry boundary treatment for UGKS is proposed and applied in this study. It is found that: (1) velocity slip is not obvious on upwind and downwind surfaces of square cylinder due to the tangential gas flow being weak in these surfaces; (2) with the increase of local Knudsen number, velocity slip on upper surface always increases, but temperature jump can decrease, which indicates that Knudsen number is not the decisive parameter to characterize temperature jump; (3) the heat transfer between gas and square cylinder enhances with the increase of inflow Knudsen number and cylinder temperature due to the increase of temperature jump and deteriorates with the increase of inflow Mach number on account of gas stagnation; and (4) the drag coefficient increases with the increase of inflow Knudsen number, the decrease of inflow Mach number, and the increase of cylinder temperature. To further predict the variation of average Nusselt number and drag coefficient, correlations for average Nusselt number and drag coefficient with inflow Mach number ranging from 0.05 to 0.3, inflow Knudsen number ranging from 0.1 to 10, and cylinder temperature ranging from 320 K to 380 K are proposed. This research can improve the understanding for mechanisms of gas flow and heat transfer in micro-electromechanical system (MEMS) devices.

References

1.
Ma
,
H. T.
,
Zhou
,
W. Y.
,
Lu
,
X. Y.
,
Ding
,
Z. Q.
,
Cao
,
Y.
,
Deng
,
N.
, and
Zhang
,
Y. F.
,
2015
, “
Investigation on the Air Flow and Heat Transfer From a Horizontal Rotating Cylinder
,”
Int. J. Therm. Sci.
,
95
, pp.
21
28
.10.1016/j.ijthermalsci.2015.03.017
2.
Yamamoto
,
K.
, and
Nakamura
,
M.
,
2011
, “
Simulation on Flow and Heat Transfer in Diesel Particulate Filter
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), p.
060901
.10.1115/1.4003448
3.
Miwa
,
J.
,
Asako
,
Y.
,
Hong
,
C.
, and
Faghri
,
M.
,
2009
, “
Performance of Gas-to-Gas Micro-Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
5
), p.
051801
.10.1115/1.3013828
4.
Schwaenen
,
M.
, and
Duggleby
,
A.
,
2012
, “
Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer Using Orthogonal Decomposition
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
2
), p.
020904
.10.1115/1.4004873
5.
Shevyrin
,
A. A.
,
Wu
,
J. S.
, and
Bondar
,
Y. A.
,
2016
, “
Investigation of an Ionized Shock Layer in a Rarefied Gas Flow Around a Reentry Vehicle
,”
AIP Conf. Proc.
,
1770
, p.
040011
.10.1063/1.4964080
6.
Li
,
Z. H.
,
Peng
,
A. P.
,
Wu
,
J. L.
,
Ma
,
Q.
,
Tang
,
X. W.
, and
Liang
,
J.
,
2019
, “
Gas-Kinetic Unified Algorithm for Computable Modeling of Boltzmann Equation for Aerothermodynamics During Falling Disintegration of Tiangong-Type Spacecraft
,”
AIP Conf. Proc.
,
2132
, p.
100013
.10.1063/1.5119608
7.
Chen
,
L.
,
Luan
,
H. B.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Effects of Roughness of Gas Diffusion Layer Surface on Liquid Water Transport in Micro Gas Channels of a Proton Exchange Membrane Fuel Cell
,”
Numer. Heat Transfer, Part A
,
62
(
4
), pp.
295
318
.10.1080/10407782.2012.670586
8.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2011
, “
Mixed Convection in a Vertical Channel Containing Porous and Viscous Fluid Regions With Viscous Dissipation and Inertial Effects: A Perturbation Solution
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
9
), p.
092602
.10.1115/1.4003969
9.
Hasan
,
N.
, and
Saeed
,
A.
,
2017
, “
Effects of Heating and Free-Stream Orientation in Two-Dimensional Forced Convective Flow of Air Past a Square Cylinder
,”
Int. J. Therm. Sci.
,
112
, pp.
1
30
.10.1016/j.ijthermalsci.2016.08.020
10.
Arif
,
M. R.
, and
Hasan
,
N.
,
2020
, “
Large-Scale Heating Effects on Global Parameters for Flow Past a Square Cylinder at Different Cylinder Inclinations
,”
Int. J. Heat Mass Transfer
,
161
, p.
120237
.10.1016/j.ijheatmasstransfer.2020.120237
11.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.10.1115/1.2841414
12.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2925
2935
.10.1016/0017-9310(95)00381-9
13.
Liu
,
Z.
,
Zhou
,
J.
, and
Wu
,
H.
,
2018
, “
New Correlations for Slip Flow and Heat Transfer Over a Micro Spherical Particle in Gaseous Fluid
,”
Powder Technol.
,
338
, pp.
129
139
.10.1016/j.powtec.2018.07.006
14.
Yu
,
P.
,
2013
, “
A Unified Gas Kinetic Scheme for All Knudsen Number Flows
,” Ph.D. thesis,
Hong Kong University of Science and Technology
, Hong Kong.
15.
Meliga
,
P.
,
Boujo
,
E.
,
Pujals
,
G.
, and
Gallaire
,
F.
,
2014
, “
Sensitivity of Aerodynamic Forces in Laminar and Turbulent Flow Past a Square Cylinder
,”
Phys. Fluids
,
26
(
10
), p.
104101
.10.1063/1.4896941
16.
Meliga
,
P.
,
Cadot
,
O.
, and
Serre
,
E.
,
2016
, “
Experimental and Theoretical Sensitivity Analysis of Turbulent Flow Past a Square Cylinder
,”
Flow, Turbul. Combust.
,
97
(
4
), pp.
987
1015
.10.1007/s10494-016-9755-0
17.
Hasan
,
N.
, and
Ali
,
R.
,
2013
, “
Vortex-Shedding Suppression in Two-Dimensional Mixed Convective Flows Past Circular and Square Cylinders
,”
Phys. Fluids
,
25
(
5
), p.
053603
.10.1063/1.4804387
18.
Arif
,
M. R.
, and
Hasan
,
N.
,
2019
, “
Vortex Shedding Suppression in Mixed Convective Flow Past a Square Cylinder Subjected to Large-Scale Heating Using a Non-Boussinesq Model
,”
Phys. Fluids
,
31
(
2
), p.
023602
.10.1063/1.5079516
19.
Arif
,
M. R.
, and
Hasan
,
N.
,
2019
, “
Performance of Characteristic Numerical Boundary Conditions for Mixed Convective Flows Past a Heated Square Cylinder Using a Non-Boussinesq Approach
,”
Numer. Heat Transfer, Part A
,
76
(
4
), pp.
254
280
.10.1080/10407782.2019.1627828
20.
Cheng
,
C.
, and
Liao
,
F.
,
2000
, “
DSMC Analysis of Rarefied Gas Flow Over a Rectangular Cylinder at All Knudsen Numbers
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
720
729
.10.1115/1.1315301
21.
Beskok
,
A.
,
2001
, “
Validation of a New Velocity-Slip Model for Separated Gas Microflows
,”
Numer. Heat Transfer, Part B
,
40
(
6
), pp.
451
471
.10.1080/104077901753306593
22.
Karniadakis
,
G.
,
Beşkök
,
A.
, and
Aluru
,
N. R.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
, New York.
23.
Xu
,
K.
,
2015
,
Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes
,
World Scientific
,
Singapore
.
24.
Joneidipour
,
M. M.
, and
Kamali
,
R.
,
2011
, “
Investigation of Wall Effect on Flow Characteristics in Supersonic Rarefied Gas Flow Past a Confined Square Cylinder Using the DSMC Method
,”
ASME
Paper No. ICNMM2011-58109.10.1115/ICNMM2011-58109
25.
Lian
,
Y.
,
Chen
,
Y.
,
Tseng
,
K. C.
,
Wu
,
J. S.
,
Wu
,
B.
, and
Yang
,
L.
,
2011
, “
Improved Parallelized Hybrid DSMC–NS Method
,”
Comput. Fluids
,
45
(
1
), pp.
254
260
.10.1016/j.compfluid.2010.12.015
26.
Dai
,
L.
,
Wu
,
H.
, and
Tang
,
J.
,
2020
, “
The UGKS Simulation of Microchannel Gas Flow and Heat Transfer Confined Between Isothermal and Nonisothermal Parallel Plates
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
122501
.10.1115/1.4048255
27.
Chen
,
S.
,
Zhang
,
C.
,
Zhu
,
L.
, and
Guo
,
Z.
,
2017
, “
A Unified Implicit Scheme for Kinetic Model Equations. Part I. Memory Reduction Technique
,”
Sci. Bull.
,
62
(
2
), pp.
119
129
.10.1016/j.scib.2016.12.010
28.
Zhu
,
Y. J.
,
Zhong
,
C. W.
, and
Xu
,
K.
,
2017
, “
Unified Gas-Kinetic Scheme With Multigrid Convergence for Rarefied Flow Study
,”
Phys. Fluids
,
29
(
9
), p.
096102
.10.1063/1.4994020
29.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.10.1002/cpa.3160020403
30.
Sharipov
,
F.
, and
Seleznev
,
V.
,
1998
, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
,
27
(
3
), pp.
657
706
.10.1063/1.556019
31.
Sharipov
,
F.
,
2002
, “
Application of the Cercignani–Lampis Scattering Kernel to Calculations of Rarefied Gas Flows. I. Plane Flow Between Two Parallel Plates
,”
Eur. J. Mech. - B/Fluids
,
21
(
1
), pp.
113
123
.10.1016/S0997-7546(01)01160-8
32.
Shakhov
,
E. M.
,
1971
, “
Approximate Kinetic Equations in Rarefied Gas Theory
,”
Fluid Dyn.
,
3
(
1
), pp.
112
115
.10.1007/BF01016254
33.
Shakhov
,
E. M.
,
1972
, “
Generalization of the Krook Kinetic Relaxation Equation
,”
Fluid Dyn.
,
3
(
5
), pp.
95
96
.10.1007/BF01029546
34.
Ambruş
,
V. E.
,
Sharipov
,
F.
, and
Sofonea
,
V.
,
2020
, “
Comparison of the Shakhov and Ellipsoidal Models for the Boltzmann Equation and DSMC for Ab Initio-Based Particle Interactions
,”
Comput. Fluids
,
211
, p.
104637
.10.1016/j.compfluid.2020.104637
35.
Ambruş
,
V. E.
,
Sharipov
,
F.
, and
Sofonea
,
V.
,
2019
, “
Lattice Boltzmann Approach to Rarefied Gas Flows Using Half-Range Gauss-Hermite Quadratures: Comparison to DSMC Results Based on Ab Initio Potentials
,”
AIP Conf. Proc.
,
2132
, p.
060012
.10.1063/1.5119552
36.
Sharipov
,
F.
, and
Benites
,
V. J.
,
2019
, “
Transport Coefficients of Argon and Its Mixtures With Helium and Neon at Low Density Based Ab Initio Potentials
,”
Fluid Phase Equilib.
,
498
, pp.
23
32
.10.1016/j.fluid.2019.06.010
37.
Chen
,
S.
,
Xu
,
K.
,
Lee
,
C.
, and
Cai
,
Q.
,
2012
, “
A Unified Gas Kinetic Scheme With Moving Mesh and Velocity Space Adaptation
,”
J. Comput. Phys.
,
231
(
20
), pp.
6643
6664
.10.1016/j.jcp.2012.05.019
38.
Sharipov
,
F.
,
2016
,
Rarefied Gas Dynamics
,
Wiley-VCH
, Weinheim,
Germany
.
39.
Guo
,
Z.
,
Liu
,
H.
,
Luo
,
L.
, and
Xu
,
K.
,
2008
, “
A Comparative Study of the LBE and GKS Methods for 2D Near Incompressible Laminar Flows
,”
J. Comput. Phys.
,
227
(
10
), pp.
4955
4976
.10.1016/j.jcp.2008.01.024
40.
Yang
,
W. Q.
,
Gu
,
X. J.
,
Wu
,
L.
,
Emerson
,
D. R.
,
Zhang
,
Y. H.
, and
Tang
,
S.
,
2020
, “
A Hybrid Approach to Couple the Discrete Velocity Method and Method of Moments for Rarefied Gas Flows
,”
J. Comput. Phys.
,
410
, p.
109397
.10.1016/j.jcp.2020.109397
41.
Ferziger
,
J. H.
, and
Kaper
,
H. G.
,
1972
,
Mathematical Theory of Transport Processes in Gases
,
North-Holland Publishing Company
, Amsterdam,
The Netherlands
.
42.
Hu
,
Y. A.
,
Sun
,
Q. H.
, and
Fan
,
J.
,
2009
, “
Simulation of Gas Flow Over a Micro Cylinder
,”
ASME Paper No. MNHMT2009-18288.
43.
Kumar
,
D.
,
Sourav
,
K.
,
Sen
,
S.
, and
Yadav
,
P. K.
,
2018
, “
Steady Separation of Flow From an Inclined Square Cylinder With Sharp and Rounded Base
,”
Comput. Fluids
,
171
, pp.
29
40
.10.1016/j.compfluid.2018.05.020
44.
Liu
,
Z.
,
Zhou
,
J.
, and
Wu
,
H.
,
2018
, “
Non-Isothermal Slip Flow Over Micro Spherical Particle at Low Reynolds Numbers
,”
Chem. Eng. Sci.
,
191
, pp.
19
30
.10.1016/j.ces.2018.06.047
You do not currently have access to this content.