Abstract

Infrared suppression devices (IRS) are frequently used in naval/cargo ships to passively entrain an additional amount of cold air from the atmosphere, and mix it with the hot plume so as to suppress its temperature, and the IR signature. In this work, a convex-type IRS device has been proposed consisting of five numbers of the convex-type funnels. The air entrainment ratio has been numerically computed by solving the transport equations (i.e., mass, momentum, energy, turbulent kinetic energy, and its dissipation rate in a structured grid arrangement by employing a pressure-based finite volume solver in ansysfluent. The pertinent parameters like the Reynolds number, inlet temperature ratio, convex-radius ratio, and funnel-overlap height have been varied in the range of −1.5 × 105 to 1.5 × 106, 1.243 to 2.576, 0.834 to 1, and 0 to 0.326, respectively. It has been observed that the air entrainment ratio increases with both the Reynolds number and convex-radius ratio for the considered temperature ratios. An optimum convex-radius ratio (=0.909) has been obtained, where the air entrainment and the outlet temperature become the maximum and the minimum, respectively. Both the inlet temperature ratio and overlap height significantly improve intake of cold air into the IRS device due to the additional buoyancy force, and the enhanced area availability for air the ingestion. The convex-type IRS device performs better than a cylindrical-type IRS device. A nonlinear regression model based on the Levenberg-Marquardt (L-M) method has been deployed to develop a correlation equation for the air entrainment.

References

1.
Werle
,
M.
,
Presz
,
W.
, and
Paterson
,
R.
,
1987
, “
Flow Structure in a Periodic Axial Vortex Array
,”
AIAA
Paper No. 87-0610.10.2514/6.1987-610
2.
McCormick
,
D. C.
, and
Bennet
,
J. C.
,
1994
, “
Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer
,”
AIAA
Paper No. 93-0219.10.2514/3.12183
3.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigation of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.10.1016/j.applthermaleng.2005.04.011
4.
Shan
,
Y.
, and
Zhang
,
J.
,
2009
, “
Numerical Investigation of Flow Mixture Enhancement and Infrared Radiation Shield by Lobed Forced Mixer
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3687
3695
.10.1016/j.applthermaleng.2009.06.023
5.
Sun
,
X. L.
,
Wang
,
Z.
,
Zhou
,
L.
,
Liu
,
Z.
, and
Shi
,
J.
,
2016
, “
Influences of Design Parameters on a Double Serpentine Convergent Nozzle
,”
ASME J. Eng. Gas Turbines Power-Trans. ASME
,
138
(
7
), pp.
072301
.10.1115/1.4032338
6.
Im
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
7.
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2011
, “
Influence of Geometry on Starting Vortex and Ejector Performance
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051204
.10.1115/1.4004082
8.
Rao
,
G. A.
, and
Mahulikar
,
S. P.
,
2005
, “
Effect of Atmospheric Transmission and Radiance on Aircraft Infrared Signatures
,”
J. Aircr.
,
42
(
4
), pp.
1046
1054
.10.2514/1.7515
9.
Rao
,
G. A.
, and
Mahulikar
,
S. P.
,
2002
, “
Integrated Review of Stealth Technology and Its Role in Airpower
,”
Aeronaut. J.
,
106
, pp.
629
642
.10.1017/S0001924000011702
10.
Baranwal
,
N.
, and
Mahulikar
,
S. P.
,
2019
, “
Review of Infrared Signature Suppression Systems Using Optical Blocking Method
,”
Def. Technol.
,
15
(
3
), pp.
432
439
.10.1016/j.dt.2018.12.002
11.
Mahulikar
,
S. P.
,
Sonawane
,
H. R.
, and
Rao
,
G. A.
,
2007
, “
Infrared Signature Studies of Aerospace Vehicles
,”
Prog. Aero. Sci.
,
43
(
7–8
), pp.
218
245
.10.1016/j.paerosci.2007.06.002
12.
Crowe
,
D. S.
, and
Martin
,
C. L.
,
2015
, “53rd AIAA Aerospace Meetings,
Effect of Geometry on the Exit Temperature From Serpentine Exhaust Nozzles
,”
AIAA
Paper No. 1670.10.2514/6.2015-1670
13.
Crowe
,
D. S.
, and
Martin
,
C. L.
,
2016
, “
Hot Streak Characterization in Serpentine Exhaust Nozzles
,”
AIAA
Paper No. 2016-4502.10.2514/6.2016-4502
14.
Shan
,
Y.
,
Pan
,
C.
, and
Zhang
,
J.
,
2015
, “
Investigation on Incompressible Lobed Mixer-Ejector Performance
,”
J. Propul. Power
,
31
(
1
), pp.
265
277
.10.2514/1.B35279
15.
Thompson
,
J.
,
Vaitekunas
,
D.
, and
Birk
,
A. M.
,
1998
, “
IR Signature Suppression of Modern Naval Ships 1
,”
ASNE 21st Century Combatant Technology Symposium
, Jan. 27-30, pp.
1
9
.
16.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
17.
Birk
,
A. M.
, and
VanDam
,
D.
,
1989
, “
Marine Gas Turbine Infra-Red Signature Suppression: Aerothermal Design Considerations
,”
ASME
Paper No. 89-GT-240.10.1115/89-GT-240
18.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
19.
Singh
,
G.
,
Sundararajan
,
T.
, and
Bhaskaran
,
K. A.
,
2003
, “
Mixing and Enhancement Characteristics of Circular and Noncircular Confined Jets
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
835
842
.10.1115/1.1595676
20.
Kandakure
,
M. T.
,
Patkar
,
V. C.
, and
Patwardhan
,
A. W.
,
2008
, “
Characteristics of Turbulent Confined Jets
,”
Chem. Eng. Process.: Process Intensif.
,
47
(
8
), pp.
1234
1245
.10.1016/j.cep.2007.03.012
21.
Kandakure
,
M. T.
,
Gaikar
,
V. G.
, and
Patwardhan
,
A. W.
,
2005
, “
Hydrodynamic Aspects of Ejector
,”
Chem. Eng. Sci.
,
60
(
22
), pp.
6391
6402
.10.1016/j.ces.2005.04.055
22.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2009
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
, pp.
681
700
.10.1002/fld.2106
23.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.10.1016/j.compfluid.2010.05.012
24.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2012
, “
Maximum Air Suction Into a Louvered Funnel Through Optimum Design
,”
J. Ship Res.
,
56
(
01
), pp.
1
11
.10.5957/jsr.2012.56.1.1
25.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvered Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.10.1016/j.apor.2014.08.009
26.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.10.1016/j.compfluid.2015.02.016
27.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.10.1016/j.apor.2014.06.007
28.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.10.1016/j.applthermaleng.2014.05.042
29.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.10.1016/j.ijthermalsci.2020.106355
30.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Device
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.10.1016/j.ijthermalsci.2019.03.034
31.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2020
, “
Numerical Analysis of Air Entrainment and Exit Temperature of a Real Scale Conical Infrared Suppression (IRS) Device
,”
Int. J. Therm. Sci.
,
156
, p.
106482
.10.1016/j.ijthermalsci.2020.106482
32.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105208
.10.1016/j.icheatmasstransfer.2021.105208
33.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
New Correlations for Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression System With Conical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082101
.10.1115/1.4051129
34.
Mohanty
,
A.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2019
, “
Natural Convection Cooling of an Infrared Suppression (IRS) Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
141
, pp.
103
113
.10.1016/j.ijthermalsci.2019.03.032
35.
Mohanty
,
A.
,
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Cooling of an Infrared Suppression Device (IRS) With Conical Funnels- A Computational Approach
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104891
.10.1016/j.icheatmasstransfer.2020.104891
36.
Singh
,
P.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2009
, “
Experimental Investigation of Non-Circular Ejector Air Diffuser
,”
AIAA
Paper No. 2009-4213.10.2514/6.2009-4213
37.
Singh
,
P.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2014
, “
Effect of Number of Slots and Overlap on the Performance of Non-Circular Ejector Air Diffuser
,”
AIAA
Paper No. 2014-2837.10.2514/6.2014-2837
38.
Singh
,
L.
,
Singh
,
S. N.
, and
Singh
,
S. S.
,
2018
, “
Effect of Standoff Distance and Area Ratio on the Performance of Circular Exhaust Ejector Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng. G, J. Aerosp. Eng.
,
232
(
15
), pp.
2821
2832
.10.1177/0954410017717287
39.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2021
, “
Enhancement of Air Entrainment in Ejector-Diffuser Using Plate Guidance at Slots to Reduce Infrared Emission
,”
Proc. Inst. Mech. Eng. G- J. Aerosp. Eng.
,
235
(
10
), pp.
1284
1305
.10.1177/0954410020971938
40.
Singh
,
L.
,
Singh
,
S. N.
, and
Sinha
,
S. S.
,
2020
, “
Effect of Reynolds Number and Slot Guidance on Passive Infrared Suppression Device
,”
Aero. Sci. Tech
,
99
, p.
105732
.10.1016/j.ast.2020.105732
41.
Churchill
,
S. W.
,
2000
, “
The Art of Correlation
,”
Ind. Eng. Chem. Res.
,
39
(
6
), pp.
1850
1877
.10.1021/ie9908940
42.
FLUENT Manual
,
2006
,
FLUENT Inc., 10 Cavendish Court, Centerra Resource Park
, Lebanon, NH 03766.
43.
Pritchard
,
R.
,
Guy
,
J. J.
, and
Connor
,
N. E.
,
1977
,
Handbook of Industrial Gas Utilization: Engineering Principles and Practice
, Van Nostrand Reinhold Co, New York.
44.
Becker
,
H. A.
,
Hottel
,
H. C.
, and
Williams
,
G. C.
,
1963
, “
Mixing and Flow in Ducted Turbulent Jets
,”
9th Int. Symp. Combustion
,
9(1), pp.
7
20
.10.1016/S0082-0784(63)80007-7
45.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axi-Symmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.10.1017/S0022112061000834
46.
Mishra
,
S. K.
,
Barik
,
A. K.
, and
Swain
,
P. K.
,
2022
, “
Air Entrainment and Outlet Temperature Characteristics of a Modified Infrared Suppression Device With Inward and Outward Guides
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121006
.10.1115/1.4055068
You do not currently have access to this content.