Abstract

The single bubble dynamics and local thermal effects in a rectangular channel are investigated in this paper under subcooled nucleate flow boiling conditions. A combined effect of Marangoni and microlayer evaporation in flow boiling regimes has rarely been reported in open literature. Therefore, a comprehensive boiling model that combines the three submodels, namely, phase change model, microlayer evaporation model, and Marangoni model, is developed that accounts for small-scale physics such as evolution of superheat layer during bubble growth, microlayer evaporation, and scavenging of the superheated liquid during the bubble departure. The verification of model has been carried out through detailed flow and temperature field validation exercises of various bubble stages with recent experimental data reported in the literature. The effects of varying subcooled conditions and Reynolds number on bubble dynamics and the associated heat transfer rates have been examined. The study reveals a decreasing trend in the bubble diameter with increasing Reynolds number and degree of subcooling. It has also been observed that the bubble shape is affected by the Marangoni phenomena. Bubble shape slightly flattens during inception, gradually becomes spherical while sliding, and later elongates after liftoff. The individual contribution of microlayer heat flow (Qmicrolayer) is estimated to be around 22–40% for flow boiling conditions and it is the second-highest heat transfer contributor after the latent heat transfer. The results obtained from the proposed model show a good match with published data and indicate the significance of microlayer in the single bubble flow boiling heat transfer.

References

1.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
2.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiph. Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
3.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
4.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat Transfer Correlation for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
(
1
), pp.
73
87
.10.1016/0017-9310(80)90140-4
5.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling-A Simple Correlation
,”
IchemE Symposium Series,
University of Leeds, UK, July 3–5,
86
, pp.
786
793
.
6.
Genske
,
P.
, and
Stephan
,
K.
,
2006
, “
Numerical Simulation of Heat Transfer During Growth of Single Vapor Bubbles in Nucleate Boiling
,”
Int. J. Therm. Sci.
,
45
(
3
), pp.
299
309
.10.1016/j.ijthermalsci.2004.07.008
7.
Son
,
G.
, and
Dhir
,
V. K.
,
2008
, “
Numerical Simulation of Nucleate Boiling on a Horizontal Surface at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2566
2582
.10.1016/j.ijheatmasstransfer.2007.07.046
8.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
9.
Giustini
,
G.
,
Jung
,
S.
,
Kim
,
H.
,
Ardron
,
K. H.
, and
Walker
,
S. P.
,
2019
, “
Microlayer Evaporation During Steam Bubble Growth
,”
Int. J. Therm. Sci.
,
137
, pp.
45
54
.10.1016/j.ijthermalsci.2018.11.012
10.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Heat Mass Transfer
,
30
(
2
), pp.
119
125
.10.1007/BF00715018
11.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.10.1016/0017-9310(92)90276-X
12.
Cooper
,
M. G.
, and
Lloyd
,
A. J. P.
,
1969
, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
895
913
.10.1016/0017-9310(69)90154-9
13.
Cooper
,
M. G.
,
1969
, “
The Microlayer and Bubble Growth in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
915
933
.10.1016/0017-9310(69)90155-0
14.
Shyamkumar
,
P. I.
,
Singh
,
S.
,
Srivastava
,
A.
, and
Visaria
,
M.
,
2022
, “
Numerical Investigation of Nucleate Pool Boiling Heat Transfer for Different Superheat Conditions
,”
J. Heat Transfer Eng.
,
43
(
1
), pp.
83
100
.10.1080/01457632.2020.1844450
15.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer
,
56
(
8
), pp.
631
646
.10.1080/10407780903423908
16.
Koffman
,
L. D.
, and
Plesset
,
M. S.
,
1983
, “
Experimental Observations of the Microlayer in Vapor Bubble Growth on a Heated Solid
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
3
), pp.
625
632
.10.1115/1.3245631
17.
Jung
,
S. B.
, and
Kim
,
H. D.
,
2014
, “
An Experimental Method to Simultaneously Measure the Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
73
, pp.
365
375
.10.1016/j.ijheatmasstransfer.2014.02.014
18.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.10.1016/0017-9310(93)80041-R
19.
Kim
,
J.
,
Oh
,
B. D.
, and
Kim
,
M. H.
,
2006
, “
Experimental Study of Pool Temperature Effects on Nucleate Pool Boiling
,”
Int. J. Multiph. Flow
,
32
(
2
), pp.
208
231
.10.1016/j.ijmultiphaseflow.2005.09.005
20.
Zeng
,
L. Z.
,
Klausner
,
J. F.
,
Bernhard
,
D. M.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems – I. Pool Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2261
2270
.10.1016/S0017-9310(05)80111-5
21.
Zeng
,
L. Z.
,
Klausner
,
J. F.
,
Bernhard
,
D. M.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems – II. Flow Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2271
2279
.10.1016/S0017-9310(05)80112-7
22.
Wu
,
W.
,
Chen
,
P.
,
Jones
,
B. G.
, and
Newell
,
T. A.
,
2008
, “
A Study of Bubble Detachment and the Impact of Heated Surface Structure in Subcooled Nucleate Boiling Flows
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2693
2698
.10.1016/j.nucengdes.2008.05.013
23.
Situ
,
R.
,
Hibiki
,
T.
,
Ishii
,
M.
, and
Mori
,
M.
,
2005
, “
Bubble Lift-Off Size in Forced Convective Reed Boiling Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5536
5548
.10.1016/j.ijheatmasstransfer.2005.06.031
24.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
25.
Gulshan
,
K. S.
,
Saylee
,
M.
, and
Atul
,
S.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
238
257
.10.1016/j.expthermflusci.2019.02.018
26.
Gulshan
,
K. S.
, and
Atul
,
S.
,
2020
, “
Whole Field Measurements to Quantify the Thermal Impact of Single Vapor Bubble Under Nucleate Flow Boiling Regime
,”
Int. J. Heat Mass Transfer
,
157
, p.
119932
.10.1016/j.ijheatmasstransfer.2020.119932
27.
Surya
,
N.
,
Atul
,
S.
, and
Suneet
,
S.
,
2018
, “
Rainbow Schlieren-Based Investigation of Heat Transfer Mechanisms During Isolated Nucleate Pool Boiling Phenomenon: Effect of Superheat Levels
,”
Int. J. Heat Mass Transfer
,
120
, pp.
127
143
.10.1016/j.ijheatmasstransfer.2017.12.005
28.
Surya
,
N.
,
Tajinder
,
S.
,
Atul
,
S.
, and
Suneet
,
S.
,
2019
, “
Experiments on the Effects of Varying Subcooled Conditions on the Dynamics of Single Vapor Bubble and Heat Transfer Rates in Nucleate Pool Boiling Regime
,”
Int. J. Heat Mass Transfer
,
134
, pp.
85
100
.10.1016/j.ijheatmasstransfer.2018.12.139
29.
Surya
,
N.
,
Atul
,
S.
, and
Suneet
,
S.
,
2019
, “
Rainbow Schlieren-Based Direct Visualization of Thermal Gradients Around Single Vapor Bubble During Nucleate Boiling Phenomena of Water
,”
Int. J. Multiph. Flow
,
110
, pp.
82
95
.10.1016/j.ijmultiphaseflow.2018.08.012
30.
Cao
,
Y.
,
Kawara
,
Z.
,
Yokomine
,
T.
, and
Kunugi
,
T.
,
2016
, “
Experimental and Numerical Study on Nucleate Bubble Deformation in Subcooled Flow Boiling
,”
Int. J. Multiph. Flow
,
82
, pp.
93
105
.10.1016/j.ijmultiphaseflow.2016.02.008
31.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Pogrebnyak
,
E.
,
2015
, “
Effect of Marangoni Flow on Subcooled Pool Boiling on Micro-Scale and Macro-Scale Heaters in Water and Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
89
, pp.
425
432
.10.1016/j.ijheatmasstransfer.2015.05.078
32.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
33.
ANSYS
,
2018
,
ANSYS Fluent 16.2.3 User's Guide
,
ANSYS, Inc
,
Canonsburg, PA
.
34.
Shyamkumar
,
P. I.
,
Singh
,
S.
,
Srivastava
,
A.
, and
Visaria
,
M.
,
2021
, “
Numerical Investigation of Thermal Performance of Key Components of Electric Vehicles Using Nucleate Boiling
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061027
.10.1115/1.4050666
You do not currently have access to this content.