Abstract

The onset of binary/double-diffusive convection with conductivity and viscosity variations has been investigated for Casson nanofluids using Darcy–Brinkman model. Nanoparticle conductivity and viscosity are used as linear functions of volume fraction. The normal mode approach, linearized stability theory, and one-term Galerkin method are used to obtain the expressions of Darcy–Rayleigh number for stationary and oscillatory convection. Different base-fluids (water, blood, honey) for different porous phases (glass, limestone, sand) have been examined numerically using the software mathematica (version 12.0). When Darcy parameter, conductivity, and viscosity variation parameters are combined, the layer's stability is significantly enhanced. The top-heavy layer of fluid instability state is shown to be dominated by stationary mode. It is observed that non-Newtonian Casson parameter and solute Lewis number destabilize the system while porosity parameter, Darcy number, and solute Rayleigh number postpone the same. Interestingly, thermal capacity ratio, conductivity, and viscosity parameters have stabilizing effects. A comparison of stability patterns of Newtonian and non-Newtonian nanofluids is carried out numerically by taking different base fluids like water (Newtonian fluid), blood, and honey (non-Newtonian Casson fluids). The system is found to be more stable for non-Newtonian fluids. It is observed that conductivity variation pattern for different porous media is: glass < limestone < sand for all the base fluids. As far as base fluids are concerned, they follow the conductivity pattern as water < honey < blood for different porous phases.

References

1.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Paper No. FED-231/MD.
2.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
3.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
4.
Tzou
,
D. Y.
,
2008
, “
Instability of Nanofluid in Natural Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), pp.
1
9
.10.1115/1.2908427
5.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluid in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2967
2979
.10.1016/j.ijheatmasstransfer.2007.09.014
6.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
(
3
), pp.
217
223
.10.1016/j.euromechflu.2010.02.003
7.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model
,”
Trans. Porous Media
,
81
(
3
), pp.
409
422
.10.1007/s11242-009-9413-2
8.
Agarwal
,
S.
,
Bhadauria
,
B. S.
, and
Siddheshwar
,
P. G.
,
2011
, “
Thermal Instability of a Nanofluid Saturating a Rotating Anisotropic Porous Medium
,”
Spec. Top. Rev. Porous Media
,
2
(
1
), pp.
53
64
.10.1615/SpecialTopicsRevPorousMedia.v2.i1.60
9.
Gupta
,
U.
,
Ahuja
,
J.
, and
Wanchoo
,
R. K.
,
2013
, “
Magneto Convection in a Nanofluid Layer
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1163
1171
.10.1016/j.ijheatmasstransfer.2013.05.035
10.
Garoosi
,
F.
,
Jahanshaloo
,
L.
,
Rashidi
,
M. M.
,
Badakhsh
,
A.
, and
Ali
,
M. A.
,
2015
, “
Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model
,”
Appl. Math. Comp.
,
254
, pp.
183
203
.10.1016/j.amc.2014.12.116
11.
Ahuja
,
J.
, and
Sharma
,
J.
,
2020
, “
Rayleigh-Bénard Instability in Nanofluids: A Comprehensive Review
,”
Micro Nano Sys. Lett.
,
8
, pp.
1
15
.https://doi.org/10.1186/s40486-020-00123-y
12.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
The Onset of Double-Diffusive Nanofluid Convection in a Layer of Saturated Porous Medium
,”
Trans. Porous Media
,
85
(
3
), pp.
941
951
.10.1007/s11242-010-9600-1
13.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2012
, “
The Onset of Convection in a Layer of a Porous Medium Saturated by a Nanofluid: Effects of Conductivity and Viscosity Variation and Cross-Diffusion
,”
Trans. Porous Med.
,
92
(
3
), pp.
837
846
.10.1007/s11242-011-9935-2
14.
Yadav
,
D.
,
Agrawal
,
G. S.
, and
Bhargava
,
R.
,
2013
, “
Onset of Double-Diffusive Nanofluid Convection in a Layer of Saturated Porous Medium With Thermal Conductivity and Viscosity Variation
,”
J. Porous Media
,
16
(
2
), pp.
105
121
.10.1615/JPorMedia.v16.i2.30
15.
Yadav
,
D.
,
Lee
,
D.
,
Cho
,
H. H.
, and
Lee
,
J.
,
2016
, “
The Onset of Double-Diffusive Nanofluid Convection in a Rotating Porous Medium Layer With Thermal Conductivity and Viscosity Variation: A Revised Model
,”
J. Porous Media
,
19
(
1
), pp.
31
46
.10.1615/JPorMedia.v19.i1.30
16.
Umavathi
,
J. C.
,
Sheremet
,
M. A.
,
Ojjela
,
O.
, and
Reddy
,
G. J.
,
2017
, “
The Onset of Double-Diffusive Convection in a Nanofluid Saturated Porous Layer: Cross-Diffusion Effects
,”
Eur. J. Mech. B/Fluids
,
65
, pp.
70
87
.10.1016/j.euromechflu.2017.01.017
17.
Sharma
,
J.
,
Gupta
,
U.
, and
Wanchoo
,
R. K.
,
2016
, “
Magneto Binary Nanofluid Convection in Porous Medium
,”
Int. J. Chem. Eng.
,
2016
, pp.
1
8
.10.1155/2016/9424036
18.
Animasaun
,
I. L.
,
Shah
,
N. A.
,
Wakif
,
A.
,
Mahanthesh
,
B.
,
Sivaraj
,
R.
, and
Koriko
,
O. K.
,
2022
,
Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization
, 1st ed.,
Chapman and Hall/CRC
CRC Press, Taylor and Frances Group, Boca Raton, FL.
19.
Blair
,
G. W.
,
1959
, “
An Equation for the Flow of Blood, Plasma and Serum Through Glass Capillaries
,”
Nature
,
183
(
4661
), pp.
613
614
.10.1038/183613a0
20.
Casson
,
N.
,
1959
, “
A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type
,”
Rheology of Disperse Systems
,
C. C.
Mill
, ed.,
Pergamon Press
,
Oxford
, pp.
84
104
.
21.
Scott Blair
,
G. W.
,
1966
, “
The Success of Casson's Equation
,”
Rheo. Acta Sep.
,
5
(
3
), pp.
184
187
.10.1007/BF01982424
22.
Venkatesan
,
J.
,
Sankar
,
D. S.
,
Hemalatha
,
K.
, and
Yatim
,
Y.
,
2015
, “
Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries
,”
J. App. Math.
,
2013
, p.
583809
.10.1155/2013/583809
23.
Aghighi
,
M. S.
,
Ammar
,
A.
,
Metivier
,
C.
, and
Gharagozlu
,
M.
,
2018
, “
Rayleigh-Bénard Convection of Casson Fluid
,”
Int. J. Therm. Sci.
,
127
, pp.
79
90
.10.1016/j.ijthermalsci.2018.01.016
24.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
25.
Zivok Balos
,
M.
,
Popov
,
N.
,
Vidakovic
,
S.
,
Pelic
,
D. L.
,
Pelic
,
M.
,
Mihaljev
,
Z.
, and
Jaksik
,
S.
,
2018
, “
Electric Conductivity and Acidity of Honey
,”
Arhive Veter. Med.
,
11
(
1
), pp.
91
101
.10.46784/e-avm.v11i1.20
26.
Gbadeyan
,
J. A.
,
Titiloye
,
E. O.
, and
Adeosun
,
A. T.
,
2020
, “
Effect of Variable Thermal Conductivity and Viscosity on Casson Nanofluid Flow With Convective Heating and Velocity Slip
,”
Heliyon
,
6
(
1
), p.
e03076
.10.1016/j.heliyon.2019.e03076
27.
Gupta
,
U.
,
Sharma
,
J.
, and
Devi
,
M.
,
2020
, “
Casson Nanofluid Convection in an Internally Heated Layer
,”
Mater. Today Proc.
,
28
, pp.
1748
1752
.10.1016/j.matpr.2020.05.156
28.
Gupta
,
U.
,
Sharma
,
J.
, and
Devi
,
M.
,
2021
, “
Double-Diffusive Instability of Casson Nanofluids With Numerical Investigations for Blood-Based Fluid
,”
Eur. Phys. J. Spec. Top.
,
230
(
5
), pp.
1435
1445
.10.1140/epjs/s11734-021-00053-9
29.
Senapati
,
M.
,
Swain
,
K.
, and
Parida
,
S. K.
,
2020
, “
Numerical Analysis of Three-Dimensional MHD Flow of Casson Nanofluid Past an Exponentially Stretching Sheet
,”
Karbala Int. J. Mod. Sci.
,
6
, pp.
1
13
.https://doi.org/10.33640/2405-609X.1462
30.
Deivanayaki
,
M.
,
Begam
,
M. J.
,
Shenofer
,
A. H.
, and
Arun
,
B.
,
2021
, “
Free Convection of Casson Nanofluid With Inclined Magnetic Field
,”
AIP Conf. Proc.
,
2327
, p.
020057
.10.1063/5.0039436
31.
Sekhar
,
K. C.
, and
Reddy
,
P. S.
,
2020
, “
Mixed Convection Flow of Casson Nanofluid in a Vertical Channel
,”
Int. J. Sci. Res. Rev.
, 7, pp.
198
210
.
32.
Devi
,
M.
,
Sharma
,
J.
, and
Gupta
,
U.
,
2022
, “
Effect of Internal Heat Source on Darcy-Brinkman Convection in a Non-Newtonian Casson Nanofluid Layer
,”
J. Por. Media
,
25
(
4
), pp.
17
35
.10.1615/JPorMedia.2022039506
33.
Mahmoodi
,
S.
,
Elmi
,
A.
, and
Nezhadi
,
S. H.
,
2018
, “
Copper Nanoparticles as Antibacterial Agents
,”
J. Mol. Pharm. Org. Process Res.
,
6
(
1
), pp. 1-7.10.4172/2329-9053.1000140
34.
Said
,
S.
,
Mikhail
,
S.
, and
Raid
,
M.
,
2020
, “
Recent Process for the Production of Alumina Nano-Particles
,”
Mat. Sci. Energy Tech.
,
3
, pp.
344
363
.10.1016/j.mset.2020.02.001
35.
Zarei
,
M.
,
Fazlara
,
A.
, and
Tulabifard
,
N.
,
2019
, “
Effect of Thermal Treatment on Physicochemical and Antioxidant Properties of Honey
,”
Heliyon
,
5
(
6
), p.
e01894
.10.1016/j.heliyon.2019.e01894
36.
Chandrasekhar
,
S.
,
1981
,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications
,
New York
.
37.
Sowmya
,
G.
,
Gireesha
,
B. J.
,
Animasaun
,
I. L.
, and
Shah
,
N. A.
,
2021
, “
Significance of Buoyancy and Lorentz Forces on Water-Conveying Iron III Oxide and Silver Nanoparticles in a Rectangular Cavity Mounted With Two Heated Fins Heat Transfer Analysis
,”
J. Therm. Anal. Calorim.
,
144
(
6
), pp.
2369
2384
.10.1007/s10973-021-10550-7
You do not currently have access to this content.