Abstract

Jet impingement finds an important role in several industrial applications which require high thermal-hydraulic performance of heat exchange systems. The self-exciting sweeping jets produced by fluidic oscillators provide superior thermal and hydraulic performance as compared to plain jets. The fluidic oscillator increases the jet impingement area on the target surface by maintaining a steady and controlled oscillatory flow. The continuous advancements in the design improvement of fluidic oscillators have led to further enhancements of heat and fluid flow characteristics. In this context, double feedback fluidic oscillators have shown promising jet flow control features and jet impingement cooling characteristics. Therefore, the current study has been devoted to analyzing and assessing the recent research progress in design improvements of double feedback fluid oscillators and the augmentation of thermal-hydraulic characteristics of impinging sweeping. Moreover, the variations in the heat transfer and hydraulic performance of impinging jets for different shapes of target surfaces have been comprehensively examined. In the end, research gaps for future work have been highlighted.

References

1.
Grubišić-Čabo
,
F.
,
Nižetić
,
S.
,
Marinić Kragić
,
I.
, and
Čoko
,
D.
,
2019
, “
Further Progress in the Research of Fin-Based Passive Cooling Technique for the Free-Standing Silicon Photovoltaic Panels
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3475
3495
.10.1002/er.4489
2.
Xu
,
Y.
,
Sun
,
B.
,
Ling
,
Y.
,
Fei
,
Q.
,
Chen
,
Z.
,
Li
,
X.
,
Guo
,
P.
,
Jeon
,
N.
,
Goswami
,
S.
,
Liao
,
Y.
,
Ding
,
S.
,
Yu
,
Q.
,
Lin
,
J.
,
Huang
,
G.
, and
Yan
,
Z.
,
2020
, “
Multiscale Porous Elastomer Substrates for Multifunctional on-Skin Electronics With Passive-Cooling Capabilities
,”
Proc. Natl. Acad. Sci. USA
,
117
(
1
), pp.
205
213
.10.1073/pnas.1917762116
3.
Zhou
,
Y.
,
Zheng
,
S.
, and
Zhang
,
G.
,
2019
, “
Study on the Energy Performance Enhancement of a New PCMs Integrated Hybrid System With the Active Cooling and Hybrid Ventilations
,”
Energy
,
179
, pp.
111
128
.10.1016/j.energy.2019.04.173
4.
Hackenhaar
,
W.
,
Mazzaferro
,
J. A. E.
,
Montevecchi
,
F.
, and
Campatelli
,
G.
,
2020
, “
An Experimental-Numerical Study of Active Cooling in Wire Arc Additive Manufacturing
,”
J. Manuf. Processes
,
52
, pp.
58
65
.10.1016/j.jmapro.2020.01.051
5.
Maghrabie
,
H. M.
,
Attalla
,
M.
,
Fawaz
,
H. E.
, and
Khalil
,
M.
,
2019
, “
Impingement/Effusion Cooling of Electronic Components With Cross-Flow
,”
Appl. Therm. Eng.
,
151
, pp.
199
213
.10.1016/j.applthermaleng.2019.01.106
6.
Wiriyasart
,
S.
, and
Naphon
,
P.
,
2020
, “
Heat Spreading of Liquid Jet Impingement Cooling of Cold Plate Heat Sink With Different Fin Shapes
,”
Case Stud. Therm. Eng.
,
20
, p.
100638
.10.1016/j.csite.2020.100638
7.
Ali
,
A. R. A.
, and
Janajreh
,
I.
,
2015
, “
Numerical Simulation of Turbine Blade Cooling Via Jet Impingement
,”
Energy Procedia
,
75
, pp.
3220
3229
.10.1016/j.egypro.2015.07.683
8.
Fawzy
,
H.
,
Zheng
,
Q.
,
Jiang
,
Y.
,
Lin
,
A.
, and
Ahmad
,
N.
,
2020
, “
Conjugate Heat Transfer of Impingement Cooling Using Conical Nozzles With Different Schemes in a Film-Cooled Blade Leading-Edge
,”
Appl. Therm. Eng.
,
177
(
May
), p.
115491
.10.1016/j.applthermaleng.2020.115491
9.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
, and
Somasundaram
,
D.
,
2018
, “
Analytical Investigation of Solar Air Heater With Jet Impingement Using Energy and Exergy Analysis
,”
Sol. Energy
,
161
, pp.
25
37
.10.1016/j.solener.2017.12.036
10.
Awad
,
M.
,
Radwan
,
A.
,
Abdelrehim
,
O.
,
Emam
,
M.
,
Shmroukh
,
A. N.
, and
Ahmed
,
M.
,
2020
, “
Performance Evaluation of Concentrator Photovoltaic Systems Integrated With a New Jet Impingement-Microchannel Heat Sink and Heat Spreader
,”
Sol. Energy
,
199
, pp.
852
863
.10.1016/j.solener.2020.02.078
11.
Huang
,
T.
,
Yue
,
L.
, and
Chang
,
X.
,
2019
, “
Numerical Study of a Fully Confined Supersonic Slot Impinging Jet From Bleed System
,”
Aerosp. Sci. Technol.
,
90
, pp.
12
22
.10.1016/j.ast.2019.04.020
12.
Lim
,
H. D.
,
New
,
T. H.
,
Mariani
,
R.
, and
Cui
,
Y. D.
,
2019
, “
Effects of Bevelled Nozzles on Standoff Shocks in Supersonic Impinging Jets
,”
Aerosp. Sci. Technol.
,
94
, p.
105371
.10.1016/j.ast.2019.105371
13.
Wae-hayee
,
M.
,
Yeranee
,
K.
,
Suksuwan
,
W.
,
Alimalbari
,
A.
,
Sae-ung
,
S.
, and
Nuntadusit
,
C.
,
2021
, “
Heat Transfer Enhancement in Rotary Drum Dryer by Incorporating Jet Impingement to Accelerate Drying Rate
,”
Drying Technol.
,
39
(
10
), pp.
1314
1324
.10.1080/07373937.2020.1742150
14.
Turkan
,
B.
,
Etemoglu
,
A. B.
, and
Can
,
M.
,
2020
, “
Analysis of Evaporative Drying of Thin Ink Films Using High-Velocity Hot-Air Impinging Jets: A Comprehensive Review
,”
Surf. Rev. Lett.
,
27
(
9
), pp.
1950210
1950221
.10.1142/S0218625X1950210X
15.
Alkhudhiri
,
N. M.
,
Gadala
,
M. S.
, and
Khan
,
M. S.
,
2020
, “
Simulation of Jet Impingement Cooling of a Stationary Hot Steel Plate
,” 2020 Advances in Science and Engineering Technology International Conferences, Advances in Science and Engineering Technology International Conferences (
ASET
), Dubai, United Arab Emirates, Feb. 4–Apr. 9, No. 19763767.10.1109/ASET48392.2020.9118347
16.
Ansu
,
U.
,
Godi
,
S. C.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation of the Inlet Condition on Jet Impingement Heat Transfer Using Liquid Crystal Thermography
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
363
375
.10.1016/j.expthermflusci.2016.08.028
17.
Greco
,
C. S.
,
Paolillo
,
G.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
de Luca
,
L.
,
2018
, “
Effects of the Stroke Length and Nozzle-to-Plate Distance on Synthetic Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1019
1031
.10.1016/j.ijheatmasstransfer.2017.09.118
18.
Glaspell
,
A. W.
,
Rouse
,
V. J.
,
Friedrich
,
B. K.
, and
Choo
,
K.
,
2019
, “
Heat Transfer and Hydrodynamics of Air Assisted Free Water Jet Impingement at Low Nozzle-to-Surface Distances
,”
Int. J. Heat Mass Transfer
,
132
, pp.
138
142
.10.1016/j.ijheatmasstransfer.2018.11.173
19.
Markal
,
B.
,
Avci
,
M.
, and
Aydin
,
O.
,
2020
, “
Conical Coaxial Impinging Air Jets: Angle Effect on the Heat Transfer Performance
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
56
(
12
), pp.
3135
3146
.10.1007/s00231-020-02925-7
20.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
21.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Adv. Heat Transfer
,
23
, pp.
1
132
.10.1016/S0065-2717(08)70005-4
22.
Krishan
,
G.
,
Aw
,
K. C.
, and
Sharma
,
R. N.
,
2019
, “
Synthetic Jet Impingement Heat Transfer Enhancement – A Review
,”
Appl. Therm. Eng.
,
149
, pp.
1305
1323
.10.1016/j.applthermaleng.2018.12.134
23.
Mohammadpour
,
J.
, and
Lee
,
A.
,
2020
, “
Investigation of Nanoparticle Effects on Jet Impingement Heat Transfer: A Review
,”
J. Mol. Liq.
,
316
, p.
113819
.10.1016/j.molliq.2020.113819
24.
Hussain
,
L.
,
Khan
,
M. M.
,
Masud
,
M.
,
Ahmed
,
F.
,
Rehman
,
Z.
,
Amanowicz
,
Ł.
, and
Rajski
,
K.
,
2021
, “
Heat Transfer Augmentation Through Different Jet Impingement Techniques: A State-of-the-Art Review
,”
Energies (Basel)
,
14
(
20
), p.
6458
.10.3390/en14206458
25.
Dutta
,
S.
, and
Singh
,
P.
,
2021
, “
Opportunities in Jet-Impingement Cooling for Gas-Turbine Engines
,”
Energies (Basel)
,
14
(
20
), p.
6587
.10.3390/en14206587
26.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib-Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.10.1016/j.applthermaleng.2012.09.041
27.
Huang
,
X.
,
Yang
,
W.
,
Ming
,
T.
,
Shen
,
W.
, and
Yu
,
X.
,
2017
, “
Heat Transfer Enhancement on a Microchannel Heat Sink With Impinging Jets and Dimples
,”
Int. J. Heat Mass Transfer
,
112
, pp.
113
124
.10.1016/j.ijheatmasstransfer.2017.04.078
28.
McInturff
,
P.
,
Suzuki
,
M.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Lee
,
D. H.
,
2018
, “
Effects of Hole Shape on Impingement Jet Array Heat Transfer With Small-Scale, Target Surface Triangle Roughness
,”
Int. J. Heat Mass Transfer
,
127
, pp.
585
597
.10.1016/j.ijheatmasstransfer.2018.06.025
29.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
30.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
,
2020
, “
Experimental and Numerical Study of Inclined Free Surface Liquid Jet Impingement
,”
Int. J. Therm. Sci.
,
154
, p.
106389
.10.1016/j.ijthermalsci.2020.106389
31.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2020
, “
Al2O3-Water Nanofluid Jet Impingement Cooling With Magnetic Field
,”
Heat Transfer Eng.
,
41
(
1
), pp.
50
64
.10.1080/01457632.2018.1513626
32.
Ekiciler
,
R.
,
Çetinkaya
,
M. S. A.
, and
Arslan
,
K.
,
2020
, “
Effect of Shape of Nanoparticle on Heat Transfer and Entropy Generation of Nanofluid-Jet Impingement Cooling
,”
Int. J. Green Energy
,
17
(
10
), pp.
555
567
.10.1080/15435075.2020.1739692
33.
Seyf
,
H. R.
,
Zhou
,
Z.
,
Ma
,
H. B.
, and
Zhang
,
Y.
,
2013
, “
Three Dimensional Numerical Study of Heat-Transfer Enhancement by Nano-Encapsulated Phase Change Material Slurry in Microtube Heat Sinks With Tangential Impingement
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
561
573
.10.1016/j.ijheatmasstransfer.2012.08.052
34.
Rehman
,
M. M. U.
,
Qu
,
Z. G.
,
Fu
,
R. P.
, and
Xu
,
H. T.
,
2017
, “
Numerical Study on Free-Surface Jet Impingement Cooling With Nanoencapsulated Phase-Change Material Slurry and Nanofluid
,”
Int. J. Heat Mass Transfer
,
109
, pp.
312
325
.10.1016/j.ijheatmasstransfer.2017.01.094
35.
Wongcharee
,
K.
,
Kunnarak
,
K.
,
Chuwattanakul
,
V.
, and
Eiamsa-Ard
,
S.
,
2020
, “
Heat Transfer Rate of Swirling Impinging Jets Issuing From a Twisted Tetra-Lobed Nozzle
,”
Case Stud. Therm. Eng.
,
22
, p.
100780
.10.1016/j.csite.2020.100780
36.
Fénot
,
M.
,
Dorignac
,
E.
, and
Lantier
,
R.
,
2021
, “
Heat Transfer and Flow Structure of a Hot Annular Impinging Jet
,”
Int. J. Therm. Sci.
,
170
, p.
107091
.10.1016/j.ijthermalsci.2021.107091
37.
Gil
,
P.
,
Wilk
,
J.
,
Smusz
,
R.
, and
Gałek
,
R.
,
2020
, “
Centerline Heat Transfer Coefficient Distributions of Synthetic Jets Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
160
, p.
120147
.10.1016/j.ijheatmasstransfer.2020.120147
38.
Tang
,
C.
,
Zhang
,
J. Z.
,
Lyu
,
Y. W.
, and
Tan
,
X. M.
,
2020
, “
Convective Heat Transfer on a Flat Target Surface Impinged by Pulsating Jet With an Additional Transmission Chamber
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
56
(
1
), pp.
183
205
.10.1007/s00231-019-02702-1
39.
Huang
,
L.
,
Yeom
,
T.
,
Simon
,
T.
, and
Cui
,
T.
,
2021
, “
An Experimental and Numerical Study on Heat Transfer Enhancement of a Heat Sink Fin by Synthetic Jet Impingement
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
57
(
4
), pp.
583
593
.10.1007/s00231-020-02974-y
40.
Li
,
P.
,
Huang
,
X.
, and
Guo
,
D.
,
2020
, “
Numerical Analysis of Dominant Parameters in Synthetic Impinging Jet Heat Transfer Process
,”
Int. J. Heat Mass Transfer
,
150
, p.
119280
.10.1016/j.ijheatmasstransfer.2019.119280
41.
Travnicek
,
Z.
, and
Antosova
,
Z.
,
2020
, “
Impingement Heat Transfer to the Synthetic Jet Issuing From a Nozzle With an Oscillating Cross Section
,”
Int. J. Therm. Sci.
,
153
, p.
106349
.10.1016/j.ijthermalsci.2020.106349
42.
Lyu
,
Y.-W.
,
Zhang
,
J.-Z.
,
Tan
,
J. W.
, and
Shan
,
Y.
,
2021
, “
Impingement Heat Transfer on Flat and Concave Surfaces by Piston-Driven Synthetic Jet From Planar Lobed Orifice
,”
Int. J. Heat Mass Transfer
,
167
, p.
120832
.10.1016/j.ijheatmasstransfer.2020.120832
43.
Talapati
,
R. J.
,
Katti
,
V. V.
, and
Hiremath
,
N. S.
,
2021
, “
Local Heat Transfer Characteristics of Synthetic Air Jet Impinging on a Smooth Convex Surface
,”
Int. J. Therm. Sci.
,
170
, p.
107143
.10.1016/j.ijthermalsci.2021.107143
44.
Abishek
,
S.
, and
Narayanaswamy
,
R.
,
2020
, “
Low Frequency Pulsating Jet Impingement Boiling and Single Phase Heat Transfer
,”
Int. J. Heat Mass Transfer
,
159
, p.
120052
.10.1016/j.ijheatmasstransfer.2020.120052
45.
Hsu
,
C. M.
,
Jhan
,
W. C.
, and
Chang
,
Y. Y.
,
2020
, “
Flow and Heat Transfer Characteristics of a Pulsed Jet Impinging on a Flat Plate
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
56
(
1
), pp.
143
160
.10.1007/s00231-019-02696-w
46.
Rakhsha
,
S.
,
Rajabi Zargarabadi
,
M.
, and
Saedodin
,
S.
,
2021
, “
Experimental and Numerical Study of Flow and Heat Transfer From a Pulsed Jet Impinging on a Pinned Surface
,”
Exp. Heat Transfer
,
34
(
4
), pp.
376
391
.10.1080/08916152.2020.1755388
47.
Simmons
,
J. M.
,
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
1981
, “
Jet Excitation by an Oscillating Vane
,”
AIAA J.
,
19
(
6
), pp.
673
676
.10.2514/3.7810
48.
Tianshu
,
L.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.10.1016/0017-9310(96)00027-0
49.
Markal
,
B.
,
2019
, “
The Effect of Total Flowrate on the Cooling Performance of Swirling Coaxial Impinging Jets
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
55
(
11
), pp.
3275
3288
.10.1007/s00231-019-02653-7
50.
Singh
,
P.
, and
Chander
,
S.
,
2018
, “
Heat Transfer and Fluid Flow Characteristics of a Pair of Interacting Dual Swirling Flame Jets Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
124
, pp.
90
108
.10.1016/j.ijheatmasstransfer.2018.03.034
51.
Xu
,
L.
,
Zhao
,
X.
,
Xi
,
L.
,
Ma
,
Y.
,
Gao
,
J.
, and
Li
,
Y.
,
2021
, “
Large-Eddy Simulation Study of Flow and Heat Transfer in Swirling and Non-Swirling Impinging Jets on a Semi-Cylinder Concave Target
,”
Appl. Sci. (Switzerland)
,
11
(
15
), p.
7167
.10.3390/app11157167
52.
Xu
,
L.
,
Xiong
,
Y.
,
Xi
,
L.
,
Gao
,
J.
,
Li
,
Y.
, and
Zhao
,
Z.
,
2019
, “
Numerical Simulation of Swirling Impinging Jet Issuing From a Threaded Hole Under Inclined Condition
,”
Entropy
,
22
(
1
), p.
15
.10.3390/e22010015
53.
Fawzy
,
H.
,
Zheng
,
Q.
, and
Ahmad
,
N.
,
2020
, “
Effect of Slot Area Ratio and Slot Angle on Swirl Cooling in a Gas Turbine Blade Leading Edge
,”
J. Aerosp. Eng.
,
33
(
5
), p.
4020046
.10.1061/(ASCE)AS.1943-5525.0001161
54.
Fawzy
,
H.
,
Zheng
,
Q.
,
Ahmad
,
N.
, and
Jiang
,
Y.
,
2020
, “
Optimization of a Swirl With Impingement Compound Cooling Unit for a Gas Turbine Blade Leading Edge
,”
Energies (Basel)
,
13
(
1
), p.
210
.10.3390/en13010210
55.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2020
, “
Numerical Investigation of Heat Transfer From a Plane Surface Due to Turbulent Annular Swirling Jet Impingement
,”
Int. J. Therm. Sci.
,
151
, p.
106257
.10.1016/j.ijthermalsci.2019.106257
56.
Agrawal
,
C.
,
Lyons
,
O. F.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Murray
,
D. B.
,
2013
, “
Rewetting of a Hot Horizontal Surface Through Mist Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
188
196
.10.1016/j.ijheatmasstransfer.2012.10.079
57.
Khangembam
,
C.
,
Singh
,
D.
,
Handique
,
J.
, and
Singh
,
K.
,
2020
, “
Experimental and Numerical Study of Air-Water Mist Jet Impingement Cooling on a Cylinder
,”
Int. J. Heat Mass Transfer
,
150
, p.
119368
.10.1016/j.ijheatmasstransfer.2020.119368
58.
Khangembam
,
C.
, and
Singh
,
D.
,
2019
, “
Experimental Investigation of Air-Water Mist Jet Impingement Cooling Over a Heated Cylinder
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
8
), p.
082201
.10.1115/1.4043771
59.
Dutta
,
P.
, and
Chattopadhyay
,
H.
,
2021
, “
Computational Analysis of Heat Transfer Due to Turbulent Annular Jet Impingement
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1080
(
1
), p.
012031
.10.1088/1757-899X/1080/1/012031
60.
Greenblatt
,
D.
,
Whalen
,
E. A.
, and
Wygnanski
,
I. J.
,
2019
, “
Introduction to the Flow Control Virtual Collection
,”
AIAA J.
,
57
(
8
), pp.
3111
3114
.10.2514/1.J058507
61.
Luo
,
X.
,
Sun
,
B.
, and
Wang
,
X.
,
2017
, “
Experimental Investigation on a Cavity-Step-Actuated Supersonic Oscillating Jet
,”
Chin. J. Aeronautics
,
30
(
1
), pp.
274
281
.10.1016/j.cja.2016.12.010
62.
Raman
,
G.
, and
Raghu
,
S.
,
2004
, “
Cavity Resonance Suppression Using Miniature Fluidic Oscillators
,”
AIAA J.
,
42
(
12
), pp.
2608
2612
.10.2514/1.521
63.
Cerretelli
,
C.
, and
Kirtley
,
K.
,
2009
, “
Boundary Layer Separation Control With Fluidic Oscillators
,”
ASME J. Turbomach.
,
131
(
4
), pp.
1
9
.10.1115/1.3066242
64.
Schmidt
,
H. J.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Erratum to: Separation Control With Fluidic Oscillators in Water
,”
Exp. Fluids
,
58
(
10
), p.
135
.10.1007/s00348-017-2414-y
65.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow-Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.10.2514/1.J056715
66.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), pp.
1
7
.10.1115/1.4004373
67.
Madadkon
,
H.
,
Fadaie
,
A.
, and
Nili-Ahmadabadi
,
M.
,
2012
, “
Experimental and Numerical Investigation of Unsteady Turbulent Flow in a Fluidic Oscillator Flow Meter With Extraction of Characteristics Diagrams
,”
Modares J. Mech. Eng.
,
12
(
5
), pp.
30
42
.http://mme.modares.ac.ir/article-15-8606-en.html
68.
Ten
,
J. S.
, and
Povey
,
T.
,
2019
, “
Self-Excited Fluidic Oscillators for Gas Turbines Cooling Enhancement: Experimental and Computational Study
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
536
547
.10.2514/1.T5261
69.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development
,”
AIAA
Paper No. 2013-2474.10.2514/6.2013-2474
70.
Woszidlo
,
R.
,
Ostermann
,
F.
, and
Schmidt
,
H. J.
,
2019
, “
Fundamental Properties of Fluidic Oscillators for Flow Control Applications
,”
AIAA J.
,
57
(
3
), pp.
978
992
.10.2514/1.J056775
71.
Stouffer
,
R.
, and
Spring
,
S.
,
1979
, “
United States Patent (19)
,”.
72.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
73.
Bobusch
,
B. C.
,
Kr
,
O.
, and
Paschereit
,
C. O.
,
2013
, “
Numerical Investigations on Geometric Parameters Affecting the Oscillation Properties of a Fluidic Oscillator
,”
AIAA
Paper No. 2013–2709.https://arc.aiaa.org/doi/10.2514/6.2013-2709
74.
Sang
,
Y.
,
Shan
,
Y.
,
Lei
,
H.
,
Tan
,
X.
, and
Zhang
,
J.
,
2020
, “
Effects of Geometric Parameters on the Physical Mechanisms of Supersonic Fluidic Oscillators
,”
Energies (Basel)
,
13
(
15
), p.
3919
.10.3390/en13153919
75.
Koklu
,
M.
,
2018
, “
Effects of Sweeping Jet Actuator Parameters on Flow Separation Control
,”
AIAA J.
,
56
(
1
), pp.
100
110
.10.2514/1.J055796
76.
Jeong
,
H. S.
, and
Kim
,
K. Y.
,
2018
, “
Shape Optimization of a Feedback-Channel Fluidic Oscillator
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
169
181
.10.1080/19942060.2017.1379441
77.
Baghaei
,
M.
, and
Bergada
,
J. M.
,
2020
, “
Fluidic Oscillators, the Effect of Some Design Modifications
,”
Appl. Sci. (Switzerland)
,
10
(
6
), p.
2105
.10.3390/app10062105
78.
Bergadà
,
J. M.
,
Baghaei
,
M.
,
Prakash
,
B.
, and
Mellibovsky
,
F.
,
2021
, “
Fluidic Oscillators, Feedback Channel Effect Under Compressible Flow Conditions
,”
Sensors (Switzerland)
,
21
(
17
), p.
5768
.10.3390/s21175768
79.
Abdulnaim
,
A.
,
Emara
,
A.
, and
Moneib
,
H.
,
2019
, “
Influence of Exit Configuration on the Flow Fields and Oscillation Characteristics Inside and Outside the Fluidic Oscillator Influence of Exit Configuration on the Flow Fields and Oscillation Characteristics Inside and Outside the Fluidic Oscillator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
610
(
1
), p.
012052
.10.1088/1757-899X/610/1/012052
80.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2021
, “
A Review on Thermal-Fluid Behavior in Sweeping Jet Fluidic Oscillators
,”
5th-6th Thermal and Fluids Engineering Conference (TFEC)
, Virtual Event, May 26–28, pp.
979
1003
.
81.
Pandey
,
R. J.
, and
Kim
,
K. Y.
,
2018
, “
Comparative Analysis of Flow in a Fluidic Oscillator Using Large Eddy Simulation and Unsteady Reynolds-Averaged Navier-Stokes Analysis
,”
Fluid Dyn. Res.
,
50
(
6
), p.
065515
.10.1088/1873-7005/aae946
82.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Experimental Comparison Between the Flow Field of Two Common Fluidic Oscillator Designs
,”
AIAA
Paper No. 2015-0781.10.2514/6.2015-0781
83.
Ghanami
,
S.
, and
Farhadi
,
M.
,
2020
, “
Heat Transfer Enhancement in a Single-Pipe Heat Exchanger With Fluidic Oscillators
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1107
1119
.10.1007/s10973-019-08816-2
84.
Nili-Ahmadabadi
,
M.
,
Cho
,
D. S.
, and
Kim
,
K. C.
,
2020
, “
Design of a Novel Vortex-Based Feedback Fluidic Oscillator With Numerical Evaluation
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1302
1324
.10.1080/19942060.2020.1826360
85.
Tomac
,
M. N.
, and
Sundström
,
E.
,
2020
, “
Fluidic Oscillator With Variable Sweep and Inclination Angles
,”
AIAA J.
,
58
(
3
), pp.
1182
1193
.10.2514/1.J058684
86.
Samsam-Khayani
,
H.
,
Mohammadshahi
,
S.
, and
Kim
,
K. C.
,
2020
, “
Experimental Study on Physical Behavior of Fluidic Oscillator in a Confined Cavity With Sudden Expansion
,”
Appl. Sci. (Switzerland)
,
10
(
23
), p.
8668
.10.3390/app10238668
87.
Kim
,
N. H.
, and
Kim
,
K. Y.
,
2021
, “
Effects of Bent Outlet on Characteristics of a Fluidic Oscillator With and Without External Flow
,”
Energies (Basel)
,
14
(
14
), p.
4342
.10.3390/en14144342
88.
Mohammadshahi
,
S.
,
Samsam-Khayani
,
H.
,
Deng
,
Z.
, and
Kim
,
K. C.
,
2021
, “
Experimental Investigation of Flow Dynamics of Oscillating Jet Emitted in Confined and Non-Confined Backward-Facing Step Geometries
,”
Eur. J. Mech., B/Fluids
,
88
, pp.
89
102
.10.1016/j.euromechflu.2021.03.002
89.
Tajik
,
A.
,
Kursat
,
T.
, and
Vladimir
,
K.
,
2021
, “
Sensitivity of a Fluidic Oscillator to Modifications of Feedback Channel and Mixing Chamber Geometry
,”
Exp. Fluids
,
62
(
12
), pp.
1
19
.10.1007/s00348-021-03342-0
90.
Kim
,
S. H.
, and
Kim
,
K. Y.
,
2020
, “
Effects of Installation Location of Fluidic Oscillators on Aerodynamic Performance of an Airfoil
,”
Aerosp. Sci. Technol.
,
99
, p.
105735
.10.1016/j.ast.2020.105735
91.
Kim
,
N. H.
, and
Kim
,
K. Y.
,
2021
, “
Effects of Bending of Fluidic Oscillators on Aerodynamic Performance of an Airfoil With a Flap
,”
Processes
,
9
(
8
), p.
1429
.10.3390/pr9081429
92.
Melton
,
L. P.
,
Koklu
,
M.
,
Andino
,
M.
, and
Lin
,
J. C.
,
2018
, “
Active Flow Control Via Discrete Sweeping and Steady Jets on a Simple-Hinged Flap
,”
AIAA J.
,
56
(
8
), pp.
2961
2973
.10.2514/1.J056841
93.
Tseng
,
S. H.
,
Yang
,
Y. T.
,
Allen
,
J.
, and
Yang
,
S. L.
,
2008
, “
Numerical Simulation of a Fluidic Oscillator for Water Removal Enhancement in PEM Fuel Cell
,”
ASME
Paper No. MNHT2008-52237.10.1115/MNHT2008-52237
94.
Jones
,
G. S.
,
Milholen
,
W. E.
,
Fell
,
J. S.
,
Webb
,
S. R.
, and
Cagle
,
C. M.
,
2016
, “
Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations
,”
AIAA
Paper No. 2016-3311.10.2514/6.2016-3311
95.
Wen
,
X.
,
Liu
,
Y.
, and
Tang
,
H.
,
2018
, “
Unsteady Behavior of a Sweeping Impinging Jet: Time-Resolved Particle Image Velocimetry Measurements
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
111
127
.10.1016/j.expthermflusci.2018.02.033
96.
Zhou
,
W.
,
Wang
,
K.
,
Yuan
,
T.
,
Wen
,
X.
,
Peng
,
D.
, and
Liu
,
Y.
,
2022
, “
Spatiotemporal Distributions of Sweeping Jet Film Cooling With a Compact Geometry
,”
Phys. Fluids
,
34
(
2
), p.
025113
.10.1063/5.0079391
97.
Wen
,
X.
,
Li
,
Z.
,
Zhou
,
W.
,
Liu
,
Y.
,
Wen
,
X.
,
Li
,
Z.
,
Zhou
,
W.
, and
Liu
,
Y.
,
2018
, “
Interaction of Dual Sweeping Impinging Jets at Different Reynolds Numbers Interaction of Dual Sweeping Impinging Jets at Different Reynolds Numbers
,”
Phys. Fluids
,
30
(
10
), p.
105105
.10.1063/1.5054161
98.
Meng
,
Q.
,
Du
,
X.
,
Chen
,
S.
, and
Wang
,
S.
,
2021
, “
Numerical Study of Dual Sweeping Jet Actuators for Corner Separation Control in Compressor Cascade
,”
J. Therm. Sci.
,
30
(
1
), pp.
201
209
.10.1007/s11630-019-1231-4
99.
Tomac
,
M. N.
, and
Gregory
,
J. W.
,
2018
, “
Oscillation Characteristics of Mutually Impinging Dual Jets in a Mixing Chamber in a Mixing Chamber
,”
Phys. Fluids
,
30
(
11
), p.
117102
.10.1063/1.5051731
100.
Li
,
Z.
,
Liu
,
J.
,
Zhou
,
W.
,
Liu
,
Y.
, and
Wen
,
X.
,
2019
, “
Experimental Investigation of Flow Dynamics of Sweeping Jets Impinging Upon Confined Concave Surfaces
,”
Int. J. Heat Mass Transfer
,
142
, p.
118457
.10.1016/j.ijheatmasstransfer.2019.118457
101.
Oz
,
F.
, and
Kara
,
K.
,
2020
, “
Jet Oscillation Frequency Characterization of a Sweeping Jet Actuator
,”
Fluids
,
5
(
2
), p.
72
.10.3390/fluids5020072
102.
Tomac
,
M. N.
, and
Hossain
,
M. A.
,
2021
, “
Flow and Frequency Characterization of the Synchronized Stacked Sweeping Jets
,”
AIAA J.
,
59
(
1
), pp.
118
130
.10.2514/1.J059643
103.
Sundström
,
E. T.
, and
Tomac
,
M. N.
,
2020
, “
Synchronization and Flow Characteristics of the Opposed Facing Oscillator Pair in Back-to-Back Configuration
,”
Flow, Turbul. Combust.
,
104
(
1
), pp.
71
87
.10.1007/s10494-019-00064-6
104.
Aram
,
S.
,
Lee
,
Y.-T.
,
Shan
,
H.
, and
Vargas
,
A.
,
2018
, “
Computational Fluid Dynamic Analysis of Fluidic Actuator for Active Flow Control Applications
,”
AIAA J.
,
56
(
1
), pp.
111
120
.10.2514/1.J056255
105.
Aram
,
S.
, and
Dejong
,
A.
,
2018
, “
Numerical Comparison Between Steady and Sweeping Jets for Active Flow Control Applications
,”
ASME
Paper No. FEDSM2018-83083.10.1115/FEDSM2018-83083
106.
Aram
,
S.
, and
Shan
,
H.
,
2018
, “
Computational Analysis of Interaction of a Sweeping Jet With an Attached Crossflow
,”
AIAA J.
,
57
(
2
), pp.
1
14
.10.2514/1.J057191
107.
Fuchiwaki
,
M.
, and
Raghu
,
S.
,
2019
, “
Flow Structure Formed by a Sweeping Jet Ejected Into a Main Flow
,”
ASME
Paper No. FEDSM2018-83045.10.1115/FEDSM2018-83045
108.
Zheng
,
J. G.
,
Xia
,
L.
,
Hu
,
J.
, and
Mao
,
Y. J.
,
2021
, “
Numerical Investigation of Characteristics of Fluidic Oscillator Operating in Quiescent Air and a Crossflow
,”
Aerosp. Sci. Technol.
,
113
, p.
106731
.10.1016/j.ast.2021.106731
109.
Alam
,
M.
, and
Kara
,
K.
,
2022
, “
The Influence of Exit Nozzle Geometry on Sweeping Jet Actuator Performance
,”
Fluids
,
7
(
2
), p.
69
.10.3390/fluids7020069
110.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Enhancement Using a Self-Oscillating Impinging Planar
,”
Trans. ASME
,
124
, pp.
771
782
.10.1115/1.1471521
111.
Wen
,
X.
,
Liu
,
J.
,
Li
,
Z.
,
Peng
,
D.
,
Zhou
,
W.
,
Kim
,
K. C.
, and
Liu
,
Y.
,
2020
, “
Jet Impingement Using an Adjustable Spreading-Angle Sweeping Jet
,”
Aerosp. Sci. Technol.
,
105
, p.
105956
.10.1016/j.ast.2020.105956
112.
Kim
,
M.
,
Kim
,
D.
,
Yeom
,
E.
, and
Kim
,
K. C.
,
2020
, “
Experimental Study on Heat Transfer and Flow Structures of Feedback-Free Sweeping Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
159
, p.
120085
.10.1016/j.ijheatmasstransfer.2020.120085
113.
Tomac
,
M. N.
,
2020
, “
Novel Impinging Jets-Based Non-Periodic Sweeping Jets
,”
J. Visualization
,
23
(
3
), pp.
369
372
.10.1007/s12650-020-00633-2
114.
Lundgreen
,
R. K.
,
Hossain
,
M. A.
,
Prenter
,
R.
,
Bons
,
J. P.
,
Gregory
,
J.
, and
Ameri
,
A.
,
2017
, “
Impingement Heat Transfer Characteristics of a Sweeping Jet
,”
AIAA
Paper No . 2017-1535.10.2514/6.2017-1535
115.
Agricola
,
L.
,
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2017
, “
Impinging Sweeping Jet Heat Transfer
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
, Atlanta, GA, 10–12 July, pp.
1
18
.
116.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.10.1115/1.4032839
117.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Effects of Exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement
,”
AIAA
Paper No. 2018-4886.10.2514/6.2018-4886
118.
Park
,
T.
,
Kara
,
K.
, and
Kim
,
D.
,
2018
, “
Flow Structure and Heat Transfer of a Sweeping Jet Impinging on a Flat Wall
,”
Int. J. Heat Mass Transfer
,
124
, pp.
920
928
.10.1016/j.ijheatmasstransfer.2018.04.016
119.
Agricola
,
L.
,
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Turbine Vane Leading Edge Impingement Cooling With a Sweeping Jet
,”
ASME
Paper No. GT2018-77073.10.1115/GT2018-77073
120.
Spens
,
A.
, and
Bons
,
J. P.
,
2021
, “
Experimental Investigation of Synchronized Sweeping Jets for Film Cooling Application
,”
AIAA
Paper No. 2021-2003.10.2514/6.2021-2003
121.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Impingement Heat Transfer on a Simulated Turbine Vane Leading Edge
,”
J. Global Power and Propulsion Society
,
2
, pp.
402
414
.10.22261/JGPPS.5A7OAZ
122.
Wu
,
Y.
,
Yu
,
S.
, and
Zuo
,
L.
,
2019
, “
Large Eddy Simulation Analysis of the Heat Transfer Enhancement Using Self-Oscillating Fluidic Oscillators
,”
Int. J. Heat Mass Transfer
,
131
, pp.
463
471
.10.1016/j.ijheatmasstransfer.2018.11.070
123.
Kim
,
S. H.
,
Kim
,
H. D.
, and
Kim
,
K. C.
,
2019
, “
Measurement of Two-Dimensional Heat Transfer and Flow Characteristics of an Impinging Sweeping Jet
,”
Int. J. Heat Mass Transfer
,
136
, pp.
415
426
.10.1016/j.ijheatmasstransfer.2019.03.021
124.
Mohammadshahi
,
S.
,
Samsam-khayani
,
H.
,
Cai
,
T.
,
Nili-ahmadabadi
,
M.
, and
Chun
,
K.
,
2021
, “
Experimental Study on Flow Characteristics and Heat Transfer of an Oscillating Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
173
, p.
121208
.10.1016/j.ijheatmasstransfer.2021.121208
125.
Hewakandamby
,
B. N.
,
2009
, “
A Numerical Study of Heat Transfer Performance of Oscillatory Impinging Jets
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
396
406
.10.1016/j.ijheatmasstransfer.2008.07.004
126.
Eghtesad
,
A.
,
Mahmoudabadbozchelou
,
M.
, and
Afshin
,
H.
,
2019
, “
Heat Transfer Optimization of Twin Turbulent Sweeping Impinging Jets
,”
Int. J. Therm. Sci.
,
146
(
April
), p.
106064
.10.1016/j.ijthermalsci.2019.106064
127.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.10.1115/1.4038690
128.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J.
,
2021
, “
Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer
,”
AIAA J.
,
59
(
6
), pp.
2113
2125
.10.2514/1.J059931
129.
Mohammadshahi
,
S.
,
Samsam-Khayani
,
H.
,
Cai
,
T.
, and
Kim
,
K. C.
,
2020
, “
Experimental and Numerical Study on Flow Characteristics and Heat Transfer of an Oscillating Jet in a Channel
,”
Int. J. Heat Fluid Flow
,
86
(
July
), p.
108701
.10.1016/j.ijheatfluidflow.2020.108701
130.
Joulaei
,
A.
,
Nili-Ahmadabadi
,
M.
, and
Chun Kim
,
K.
,
2022
, “
Parametric Study of a Fluidic Oscillator for Heat Transfer Enhancement of a Hot Plate Impinged by a Sweeping Jet
,”
Appl. Therm. Eng.
,
205
, p.
118051
.10.1016/j.applthermaleng.2022.118051
131.
Ming
,
T.
,
Wang
,
Z.
,
Liao
,
X.
,
Shi
,
T.
,
Tan
,
G.
, and
Wu
,
Y.
,
2021
, “
Unsteady RANS Simulation of Fluid Dynamic and Heat Transfer in an Oblique Self-Oscillating Fluidic Oscillator Array
,”
Int. J. Heat Mass Transfer
,
177
, p.
121515
.10.1016/j.ijheatmasstransfer.2021.121515
132.
Hossain
,
M. A.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Effects of Curvature on the Performance of Sweeping Jet Impingement Heat Transfer
,”
AIAA
Paper No. 2018–0243.10.2514/6.2018-0243
133.
Kim
,
D. J.
,
Jeong
,
S.
,
Park
,
T.
, and
Kim
,
D.
,
2019
, “
Impinging Sweeping Jet and Convective Heat Transfer on Curved Surfaces
,”
Int. J. Heat Fluid Flow
,
79
, p.
108458
.10.1016/j.ijheatfluidflow.2019.108458
134.
Osorio
,
A.
,
Hodges
,
J.
,
Zawati
,
H.
,
Fernandez
,
E.
,
Kapat
,
J.
, and
Rodriguez
,
J.
,
2019
, “
Impact of Sweeping Jet on Area-Averaged Impingement Heat Transfer
,”
ASME
Paper No. GT2019-91897.10.1115/GT2019-91897
135.
Kong
,
X.
,
Zhang
,
Y.
,
Li
,
G.
,
Lu
,
X.
,
Zhu
,
J.
, and
Xu
,
J.
,
2022
, “
Numerical Simulation of the Flow and Heat Transfer Characteristics of Sweeping and Direct Jets on a Flat Plate With Film Holes
,”
Energies (Basel)
,
15
(
12
), p.
4470
.10.3390/en15124470
You do not currently have access to this content.