Abstract

An exhaustive review was undertaken to assemble all available correlations for supercritical CO2 in straight, round tubes of any orientation, with special attention paid to how the wildly varying fluid properties near the critical point are handled. The assemblage of correlations, along with subsequent discussion, is presented from a historical perspective, starting from pioneering work on the topic in the 1950s to the modern day. Despite the growing sophistication of sCO2 heat transfer correlations, modern correlations are still only generally applicable over a relatively small range of operating conditions, and there has not been a substantial increase in predictive capabilities. Recently, researchers have turned to machine learning as a tool for next-generation heat transfer prediction. An overview of the state-of-the-art predicting sCO2 heat transfer using machine learning methods, such as artificial neural networks, is also presented.

References

1.
Brunner
,
G.
,
2010
, “
Applications of Supercritical Fluids
,”
Annu. Rev. Chem. Biomol. Eng.
,
1
(
1
), pp.
321
342
.10.1146/annurev-chembioeng-073009-101311
2.
Knez
,
Ž.
,
Markočič
,
E.
,
Leitgeb
,
M.
,
Primožič
,
M.
,
Hrnčič
,
M. K.
, and
Škerget
,
M.
,
2014
, “
Industrial Applications of Supercritical Fluids: A Review
,”
Energy
,
77
, pp.
235
243
.10.1016/j.energy.2014.07.044
3.
Qi
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2018
, “
The Application of Supercritical CO2 in Nuclear Engineering: A Review
,”
J. Comput. Multiphase Flows
,
10
(
4
), pp.
149
158
.10.1177/1757482X18765377
4.
Yang
,
C.-Y.
, and
Liao
,
K.-C.
,
2017
, “
Effect of Experimental Method on the Heat Transfer Performance of Supercritical Carbon Dioxide in Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
112404
.10.1115/1.4036694
5.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p.
061801
.10.1115/1.4035603
6.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
7.
Liao
,
G.
,
Liu
,
L.
,
Jiaqiang
,
E.
,
Zhang
,
F.
,
Chen
,
J.
,
Deng
,
Y.
, and
Zhu
,
H.
,
2019
, “
Effects of Technical Progress on Performance and Application of Supercritical Carbon Dioxide Power Cycle: A Review
,”
Energy Convers. Manage.
,
199
, p.
111986
.10.1016/j.enconman.2019.111986
8.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2022
, “
Modeling of Supercritical CO2 Shell-and-Tube Heat Exchangers Under Extreme Conditions. Part I: Correlation Development
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
5
), p.
051902
.10.1115/1.4053510
9.
Krishna
,
A. B.
,
Jin
,
K.
,
Ayyaswamy
,
P. S.
,
Catton
,
I.
, and
Fisher
,
T. S.
,
2022
, “
Modeling of Supercritical CO2 Shell-and-Tube Heat Exchangers Under Extreme Conditions: Part II: Heat Exchanger Model
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
5
), p.
051903
.10.1115/1.4053511
10.
Fronk
,
B. M.
, and
Rattner
,
A. S.
,
2016
, “
High-Flux Thermal Management With Supercritical Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
124501
.10.1115/1.4034053
11.
Sullivan
,
N. P.
,
Chao
,
Y.
,
Boetcher
,
S. K. S.
, and
Ricklick
,
M. A.
,
2021
, “
Impact of Uncertainty on Prediction of Supercritical CO2 Properties and Nusselt Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
104501
.10.1115/1.4051856
12.
Pitla
,
S.
,
Robinson
,
D.
,
Groll
,
E.
, and
Ramadhyani
,
S.
,
1998
, “
Heat Transfer From Supercritical Carbon Dioxide in Tube Flow: A Critical Review
,”
HVACR Res.
,
4
(
3
), pp.
281
301
.10.1080/10789669.1998.10391405
13.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
14.
Duffey
,
R. B.
, and
Pioro
,
I. L.
,
2005
, “
Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
913
924
.10.1016/j.nucengdes.2004.11.011
15.
Cheng
,
L.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2008
, “
Analysis of Supercritical CO2 Cooling in Macro- and Micro-Channels
,”
Int. J. Refrig.
,
31
(
8
), pp.
1301
1316
.10.1016/j.ijrefrig.2008.01.010
16.
Fang
,
X.
, and
Xu
,
Y.
,
2011
, “
Modified Heat Transfer Equation for in-Tube Supercritical CO2 Cooling
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
3036
3042
.10.1016/j.applthermaleng.2011.05.037
17.
Lin
,
W.
,
Du
,
Z.
, and
Gu
,
A.
,
2012
, “
Analysis on Heat Transfer Correlations of Supercritical CO2 Cooled in Horizontal Circular Tubes
,”
Heat Mass Transfer
,
48
(
4
), pp.
705
711
.10.1007/s00231-011-0919-0
18.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1. Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.10.1016/j.ijrefrig.2004.04.018
19.
Cabeza
,
L. F.
,
de Gracia
,
A.
,
Fernández
,
A. I.
, and
Farid
,
M. M.
,
2017
, “
Supercritical CO2 as Heat Transfer Fluid: A Review
,”
Appl. Therm. Eng.
,
125
, pp.
799
810
.10.1016/j.applthermaleng.2017.07.049
20.
Ehsan
,
M. M.
,
Guan
,
Z.
, and
Klimenko
,
A.
,
2018
, “
A Comprehensive Review on Heat Transfer and Pressure Drop Characteristics and Correlations With Supercritical CO2 Under Heating and Cooling Applications
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
658
675
.10.1016/j.rser.2018.04.106
21.
Fan
,
Y.
,
Tang
,
G.
,
Li
,
X.
,
Yang
,
D.
, and
Wang
,
S.
,
2019
, “
Correlation Evaluation on Circumferentially Average Heat Transfer for Supercritical Carbon Dioxide in Non-Uniform Heating Vertical Tubes
,”
Energy
,
170
, pp.
480
496
.10.1016/j.energy.2018.12.151
22.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
23.
Bodkha
,
K.
, and
Maheshwari
,
N. K.
,
2021
, “
Heat Transfer in Supercritical Fluids: A Review
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
7
(
3
), p.
030802
.10.1115/1.4048898
24.
Bringer
,
R.
, and
Smith
,
J.
,
1957
, “
Heat Transfer in the Critical Region
,”
AlChE
,
3
(
1
), pp.
49
55
.10.1002/aic.690030110
25.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S. J.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.10.1016/j.nucengdes.2013.02.048
26.
Saltanov
,
E.
,
Pioro
,
I.
, and
Harvel
,
G.
,
2013
, “
Preliminary Investigation of Heat-Transfer Correlation for Upward Flow of CO2 at Supercritical Pressure
,”
ASME
Paper No. ICONE21-16399.10.1115/ICONE21-16399
27.
Petukhov
,
B. S.
, and
Kirillov
,
V. V.
,
1958
, “
About Heat Transfer at Turbulent Fluid Flow in Tubes (in Russian)
,”
Therm. Eng.
, (
4
), pp.
63
68
.
28.
Filonenko
,
G. K.
,
1954
, “
Hydraulic Resistance in Pipes (in Russian)
,”
Teploenergetika
,
1
(
4
), pp.
40
44
.
29.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors
, Chap.
2
,
Hemisphere Publishing Corporation
,
New York
, pp.
563
612
.
30.
McAdams
,
W. H.
,
1942
,
Heat Transmission
, 2nd ed., Vol.
10
,
McGraw-Hill Book Company
,
New York and London
.
31.
Prandtl
,
L.
,
1949
,
Fuhrer Durch Die Stromungslehre (Guide to Flow Theory)
,
Vieweg Und Sohn
,
Braunschweig
.
32.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
359
368
.
33.
Petukhov
,
B.
,
1970
, “
Chap. Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physicals Properties
,”
Advances in Heat Transfer
, Vol.
6
,
Academic Press
,
San Diego, CA
, pp.
503
564
.
34.
Krasnoshchekov
,
E.
, and
Protopopov
,
V.
,
1960
, “
About Heat Transfer in Flow of Carbon Dioxide and Water at Supercritical Region of State Parameters
,”
Therm. Eng.
,
29
(
10
), p.
94
.
35.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
36.
Petukhov
,
B. S.
,
Krasnoshchekov
,
E. A.
, and
Protopopov
,
V. S.
,
1961
, “
An Investigation of Heat Transfer to Fluids Flowing in Pipes Under Supercritical Conditions
,” 3(67) pp.
569
578
.
37.
Petukhov
,
B.
, and
Popov
,
V.
,
1963
, “
Theoretical Calculation of Heat Exchange and Frictional Resistance in Turbulent Flow in Tubes of an Incompressible Fluid With Thermophysical Properties
,”
High Temp.
,
1
(
1
), pp.
69
83
.
38.
Krasnoshchekov
,
E.
, and
Protopopov
,
V.
,
1966
, “
Experimental Study of Heat Exchange in Carbon Dioxide in the Supercritical Range at High Temperature Drops
,”
High Temp.
,
1
, pp.
375
382
.
39.
Krasnoshchekov
,
E.
,
Kuraeva
,
I.
, and
Protopopov
,
V.
,
1970
, “
Local Heat Transfer of Carbon Dioxide at Supercritical Pressure Under Cooling Conditions
,”
High Temp.
,
7
(
5
), pp.
922
930
.
40.
Krasnoshchekov
,
E.
, and
Protopopov
,
V.
,
1972
, “
A Generalized Relationship for Calculation of Heat Transfer to Carbon Dioxide at Supercritical Pressure
,”
High Temp.
,
6
(
9
), pp.
1215
1219
.
41.
Krasnoshchekov
,
E.
,
Protopopov
,
V.
,
Parkhovnik
,
I.
, and
Silin
,
V.
,
1972
, “
Some Results of an Experimental Investigation of Heat Transfer to Carbon Dioxide at Supercritical Pressure and Temperature Heads of Up to 850 C
,”
High Temp.
,
9
(
5
), pp.
992
995
.
42.
Petukhov
,
B.
,
Kurganov
,
V.
, and
Gladuntsov
,
A.
,
1973
, “
Heat Transfer in Turbulent Pipe Flow of Gases With Variable Properties
,”
Heat Transfer Sov. Res.
,
5
(
4
), pp.
109
116
.
43.
Protopopov
,
V.
,
1977
, “
Generalizing Relations for the Local Heat-Transfer Coefficients Turbulent Flows of Water and Carbon Dioxide at Supercritical Pressure in a Uniform Heated Circular Tube
,”
High Temp.
,
15
(
4
), pp.
687
692
.
44.
Baskov
,
V.
,
Kuraeva
,
I.
, and
Protopopov
,
V.
,
1977
, “
Heat Transfer With the Turbulent Flow of a Liquid at Supercritical Pressure Intubes Under Cooling Conditions
,”
High Temp.
,
15
(
1
), pp.
81
86
.
45.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Chap. Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles: Theory and Applications to Heat Exchangers and Nuclear Reactors
, Vol.
2
,
Hemisphere Publishing Corporation
,
New York
, pp.
613
640
.
46.
Watts
,
M.
, and
Chou
,
C.
,
1982
, “
Mixed Convection Heat Transfer to Supercritical Pressure Water
,” Proceedings of the Seventh International Heat Transfer Conference, Munich, Germany, Sept. 6–10, Paper No. MC16.
47.
Petrov
,
N.
, and
Popov
,
V.
,
1985
, “
Heat-Transfer and Resistance of Carbon-Dioxide Being Cooled in the Supercritical Region
,”
Therm. Eng.
,
32
(
3
), pp.
131
134
.
48.
Ghajar
,
A. J.
, and
Asadi
,
A.
,
1986
, “
Improved Forced Convective Heat-Transfer Correlations for Liquids Inthe Near-Critical Region
,”
AIAA J.
,
24
(
12
), pp.
2030
2037
.10.2514/3.9563
49.
Petrov
,
N.
, and
Popov
,
V.
,
1988
, “
Heat-Transfer and Hydraulic Resistance With Turbulent-Flow in a Tube of Water at Supercritical Parameters of State
,”
Therm. Eng.
,
35
(
10
), pp.
577
580
.
50.
Olson
,
D. A.
,
1999
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Cooled Horizontal Tube
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Report No. NISTIR 6496.
51.
Fang
,
X.
,
1999
, “
Modeling and Analysis of Gas Coolers
,”
Department of Mechanical and Industrial Engineering, University of Illinois
,
Urbana Champaign, IL
.
52.
Pitla
,
S. S.
,
Groll
,
E. A.
, and
Ramadhyani
,
S.
,
2002
, “
New Correlation to Predict the Heat Transfer Coefficient During in-Tube Cooling of Turbulent Supercritical CO2
,”
Int. J. Refrig.
,
25
(
7
), pp.
887
895
.10.1016/S0140-7007(01)00098-6
53.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
54.
Dittus
,
F.
, and
Boelter
,
L.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Publ. Eng.
,
2
, p.
443
.
55.
Winterton
,
R.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.10.1016/S0017-9310(97)00177-4
56.
Williams
,
W. C.
,
2011
, “
If the Dittus and Boelter Equation is Really the McAdams Equation, Then Should Not the McAdams Equation Really Be the Koo Equation?
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1682
1683
.10.1016/j.ijheatmasstransfer.2010.11.047
57.
Liao
,
S.
, and
Zhao
,
T.
,
2002
, “
An Experimental Investigation of Convection Heat Transfer to Supercritical Carbon Dioxide in Miniature Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
5025
5034
.10.1016/S0017-9310(02)00206-5
58.
Yoon
,
S. H.
,
Kim
,
J. H.
,
Hwang
,
Y. W.
,
Kim
,
M. S.
,
Min
,
K.
, and
Kim
,
Y.
,
2003
, “
Heat Transfer and Pressure Drop Characteristics During the in-Tube Cooling Process of Carbon Dioxide in the Supercritical Region
,”
Int. J. Refrig.
,
26
(
8
), pp.
857
864
.10.1016/S0140-7007(03)00096-3
59.
Chao
,
Y.
,
Lopes
,
N. C.
,
Ricklick
,
M. A.
, and
Boetcher
,
S. K. S.
,
2021
, “
Effect of the Heat Transfer Coefficient Reference Temperatures on Validating Numerical Models of Supercritical CO2
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
6
(
4
), p.
041001
.10.1115/1.4051637
60.
Son
,
C.-H.
, and
Park
,
S.-J.
,
2006
, “
An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During Gas Cooling Process in a Horizontal Tube
,”
Int. J. Refrig.
,
29
(
4
), pp.
539
546
.10.1016/j.ijrefrig.2005.10.010
61.
Huai
,
X.
, and
Koyama
,
S.
,
2007
, “
Heat Transfer Characteristics of Supercritical CO2 Flow in Small-Channeled Structures
,”
Exp. Heat Transfer
,
20
(
1
), pp.
19
33
.10.1080/08916150600977424
62.
Kim
,
J. K.
,
Jeon
,
H. K.
, and
Lee
,
J. S.
,
2007
, “
Wall Temperature Measurement and Heat Transfer Correlation of Turbulent Supercritical Carbon Dioxide Flow in Vertical Circular/Non-Circular Tubes
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1795
1802
.10.1016/j.nucengdes.2007.02.017
63.
Kuang
,
G.
,
Ohadi
,
M.
, and
Dessiatoun
,
S.
,
2008
, “
Semi-Empirical Correlation of Gas Cooling Heat Transfer of Supercritical Carbon Dioxide in Microchannels
,”
HVACR Res.
,
14
(
6
), pp.
861
870
.10.1080/10789669.2008.10391044
64.
Kim
,
H.
,
Bae
,
Y. Y.
,
Kim
,
H. Y.
,
Song
,
J. H.
, and
Cho
,
B. H.
,
2008
, “
Experimental Investigation on the Heat Transfer Characteristics in Upward Flow of Supercritical Carbon Dioxide
,”
Nucl. Technol.
,
164
(
1
), pp.
119
129
.10.13182/NT08-A4013
65.
Bae
,
Y.-Y.
, and
Kim
,
H.-Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
66.
Bruch
,
A.
,
Bontemps
,
A.
, and
Colasson
,
S.
,
2009
, “
Experimental Investigation of Heat Transfer of Supercritical Carbon Dioxide Flowing in a Cooled Vertical Tube
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2589
2598
.10.1016/j.ijheatmasstransfer.2008.12.021
67.
Bae
,
Y.-Y.
,
Kim
,
H.-Y.
, and
Kang
,
D.-J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
68.
Li
,
Z.-H.
,
Jiang
,
P.-X.
,
Zhao
,
C.-R.
, and
Zhang
,
Y.
,
2010
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1162
1171
.10.1016/j.expthermflusci.2010.04.005
69.
Oh
,
H.-K.
, and
Son
,
C.-H.
,
2010
, “
New Correlation to Predict the Heat Transfer Coefficient in-Tube Cooling of Supercritical CO2 in Horizontal Macro-Tubes
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1230
1241
.10.1016/j.expthermflusci.2010.05.002
70.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
71.
Kim
,
D. E.
, and
Kim
,
M.-H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
72.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2011
, “
Two Layer Heat Transfer Model for Supercritical Fluid Flow in a Vertical Tube
,”
J. Supercrit. Fluids
,
58
(
1
), pp.
15
25
.10.1016/j.supflu.2011.04.014
73.
Bae
,
Y. Y.
,
2011
, “
Mixed Convection Heat Transfer to Carbon Dioxide Flowing Upward and Downward in a Vertical Tube and an Annular Channel
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
3164
3177
.10.1016/j.nucengdes.2011.06.016
74.
Mokry
,
S. J.
, and
Pioro
,
I. L.
,
2011
, “
Heat Transfer Correlation for Supercritical Carbon DioxideFlowing Upward in a Vertical Bare Tube
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 24–25.
75.
Preda
,
T.
,
Saltanov
,
E.
,
Pioro
,
I.
, and
Gabriel
,
K. S.
,
2012
, “
Development of a Heat Transfer Correlation for Supercritical CO2 Based On Multiple Data Sets
,”
ASME
Paper No. ICONE20-POWER2012-54516
.10.1115/ICONE20-POWER2012-54516
76.
Liu
,
Z.-B.
,
He
,
Y.-L.
,
Yang
,
Y.-F.
, and
Fei
,
J.-Y.
,
2014
, “
Experimental Study on Heat Transfer and Pressure Drop of Supercritical CO2 Cooled in a Large Tube
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
307
315
.10.1016/j.applthermaleng.2014.05.024
77.
Saltanov
,
E.
,
Pioro
,
I.
,
Mann
,
D.
,
Gupta
,
S.
,
Mokry
,
S.
, and
Harvel
,
G.
,
2015
, “
Study on Specifics of Forced-Convective Heat Transfer in Supercritical Carbon Dioxide
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), p.
011008
.10.1115/1.4026395
78.
Saltanov
,
E.
,
2015
, “
Specifics of Forced-Convective Heat Transfer to Supercritical CO2 Flowing Upward in Vertical Bare Tubes
,” Ph.D. thesis,
University of Ontario Institute of Technology
, Oshawa, ON, Canada.
79.
Ma
,
T.
,
xiao Chu
,
W.
,
yang Xu
,
X.
,
tung Chen
,
Y.
, and
wang Wang
,
Q.
,
2016
, “
An Experimental Study on Heat Transfer Between Supercritical Carbon Dioxide and Water Near the Pseudo-Critical Temperature in a Double Pipe Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
93
, pp.
379
387
.10.1016/j.ijheatmasstransfer.2015.10.017
80.
Yang
,
M.
,
2016
, “
Numerical Study of the Heat Transfer to Carbon Dioxide in Horizontal Helically Coiled Tubes Under Supercritical Pressure
,”
Appl. Therm. Eng.
,
109
, pp.
685
696
.10.1016/j.applthermaleng.2016.08.121
81.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. H.
,
2016
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Rectangular Circulation Loop
,”
Appl. Therm. Eng.
,
98
, pp.
39
48
.10.1016/j.applthermaleng.2015.11.110
82.
Liu
,
S.
,
Huang
,
Y.
,
Liu
,
G.
,
Wang
,
J.
, and
Leung
,
L. K.
,
2017
, “
Improvement of Buoyancy and Acceleration Parameters for Forced and Mixed Convective Heat Transfer to Supercritical Fluids Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1144
1156
.10.1016/j.ijheatmasstransfer.2016.10.093
83.
Zhang
,
G.-W.
,
Hu
,
P.
,
Chen
,
L.-X.
, and
Liu
,
M.-H.
,
2018
, “
Experimental and Simulation Investigation on Heat Transfer Characteristics of In-Tube Supercritical CO2 Cooling Flow
,”
Appl. Therm. Eng.
,
143
, pp.
1101
1113
.10.1016/j.applthermaleng.2018.07.108
84.
Chao
,
Y.
,
Lopes
,
N. C.
,
Ricklick
,
M. A.
, and
Boetcher
,
S. K. S.
,
2022
, “
Hydraulic Development Length and Boundary Condition Effects on Local sCO2 Heat Transfer Coefficients
,”
Seventh International Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Feb. 21–24, p.
182
.
85.
Zhang
,
Q.
,
Li
,
H.
,
Kong
,
X.
,
Liu
,
J.
, and
Lei
,
X.
,
2018
, “
Special Heat Transfer Characteristics of Supercritical CO2 Flowing in a Vertically-Upward Tube With Low Mass Flux
,”
Int. J. Heat Mass Transfer
,
122
, pp.
469
482
.10.1016/j.ijheatmasstransfer.2018.01.112
86.
Fan
,
Y.
, and
Tang
,
G.
,
2018
, “
Numerical Investigation on Heat Transfer of Supercritical Carbon Dioxide in a Vertical Tube Under Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
, 138, pp.
354
364
.10.1016/j.applthermaleng.2018.04.060
87.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Park
,
J. H.
,
Park
,
H. S.
, and
Kim
,
M. H.
,
2019
, “
Heat Transfer Model for Horizontal Flows of CO2 at Supercritical Pressures in Terms of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1117
1128
.10.1016/j.ijheatmasstransfer.2018.11.075
88.
Wang
,
J.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
A Computationally Derived Heat Transfer Correlation for in-Tube Cooling Turbulent Supercritical CO2
,”
Int. J. Therm. Sci.
,
138
, pp.
190
205
.10.1016/j.ijthermalsci.2018.12.045
89.
Zhang
,
S.
,
Xu
,
X.
,
Liu
,
C.
,
Liu
,
X.
, and
Dang
,
C.
,
2019
, “
Experimental Investigation on the Heat Transfer Characteristics of Supercritical CO2 at Various Mass Flow Rates in Heated Vertical-Flow Tube
,”
Appl. Therm. Eng.
,
157
, p.
113687
.10.1016/j.applthermaleng.2019.04.097
90.
Zhang
,
S.
,
Xu
,
X.
,
Liu
,
C.
,
Liu
,
X.
,
Ru
,
Z.
, and
Dang
,
C.
,
2020
, “
Experimental and Numerical Comparison of the Heat Transfer Behaviors and Buoyancy Effects of Supercritical CO2 in Various Heating Tubes
,”
Int. J. Heat Mass Transfer
,
149
, p.
119074
.10.1016/j.ijheatmasstransfer.2019.119074
91.
Polyakov
,
A.
,
1976
, “
Development of Secondary Free-Convection Currents in Forced Turbulent Flow in Horizontal Tubes
,”
J. Appl. Mech. Tech. Phys.
,
15
(
5
), pp.
632
637
.10.1007/BF00851521
92.
Guo
,
P.
,
Liu
,
S.
,
Yan
,
J.
,
Wang
,
J.
, and
Zhang
,
Q.
,
2020
, “
Experimental Study on Heat Transfer of Supercritical CO2 Flowing in a Mini Tube Under Heating Conditions
,”
Int. J. Heat Mass Transfer
,
153
, p.
119623
.10.1016/j.ijheatmasstransfer.2020.119623
93.
Liu
,
X.
,
Xu
,
X.
,
Liu
,
C.
,
Zhang
,
S.
,
He
,
J.
, and
Dang
,
C.
,
2020
, “
Flow Structure at Different Stages of Heat Transfer Deterioration With Upward, Mixed Turbulent Flow of Supercritical CO2 Heated in Vertical Straight Tube
,”
Appl. Therm. Eng.
,
181
, p.
115987
.10.1016/j.applthermaleng.2020.115987
94.
Zhu
,
B.
,
Xu
,
J.
,
Yan
,
C.
, and
Xie
,
J.
,
2020
, “
The General Supercritical Heat Transfer Correlation for Vertical Up-Flow Tubes: K Number Correlation
,”
Int. J. Heat Mass Transfer
,
148
, p.
119080
.10.1016/j.ijheatmasstransfer.2019.119080
95.
Wang
,
L.
,
Pan
,
Y. C.
,
Lee
,
J. D.
,
Wang
,
Y.
,
Fu
,
B.-R.
, and
Pan
,
C.
,
2020
, “
Experimental Investigation in the Local Heat Transfer of Supercritical Carbon Dioxide in the Uniformly Heated Horizontal Miniature Tubes
,”
Int. J. Heat Mass Transfer
,
159
, p.
120136
.10.1016/j.ijheatmasstransfer.2020.120136
96.
Wang
,
L.
,
Pan
,
Y. C.
,
Lee
,
J. D.
,
Fu
,
B.-R.
, and
Pan
,
C.
,
2021
, “
Convective Heat Transfer Characteristics of Supercritical Carbon Dioxide in Vertical Miniature Tubes of a Uniform Heating Experimental System
,”
Int. J. Heat Mass Transfer
,
167
, p.
120833
.10.1016/j.ijheatmasstransfer.2020.120833
97.
Wahl
,
A.
,
Mertz
,
R.
,
Laurien
,
E.
, and
Starflinger
,
J.
,
2021
, “
Heat Transfer Correlation for sCO2 Cooling in a 2 mm Tube
,”
J. Supercrit. Fluids
,
173
, p.
105221
.10.1016/j.supflu.2021.105221
98.
Viswanathan
,
K.
, and
Krishnamoorthy
,
G.
,
2021
, “
The Effects of Wall Heat Fluxes and Tube Diameters on Laminar Heat Transfer Rates to Supercritical CO2
,”
Int. Commun. Heat Mass Transfer
,
123
, p.
105197
.10.1016/j.icheatmasstransfer.2021.105197
99.
Wang
,
P.
,
Ding
,
P.
,
Li
,
W.
,
Xie
,
R.
,
Duan
,
C.
,
Hong
,
G.
, and
Zhang
,
Y.
,
2022
, “
Experimental Study on Heat Transfer Characteristics of Supercritical Carbon Dioxide Natural Circulation
,”
Nucl. Eng. Technol.
,
54
(
3
), pp.
867
876
.10.1016/j.net.2021.08.031
100.
Yang
,
M.
,
Li
,
G.
,
Liao
,
F.
,
Li
,
J.
, and
Zhou
,
X.
,
2021
, “
Numerical Study of Characteristic Influence on Heat Transfer of Supercritical CO2 in Helically Coiled Tube With Non-Circular Cross Section
,”
Int. J. Heat Mass Transfer
,
176
, p.
121511
.10.1016/j.ijheatmasstransfer.2021.121511
101.
Yang
,
K.-T.
,
2008
, “
Artificial Neural Networks (ANNs): a New Paradigm for Thermal Science and Engineering
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
9
), p.
093001
.10.1115/1.2944238
102.
Hughes
,
M. T.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Status, Challenges, and Potential for Machine Learning in Understanding and Applying Heat Transfer Phenomena
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
12
), p.
120802
.10.1115/1.4052510
103.
Malekan
,
M.
,
Khosravi
,
A.
,
Goshayeshi
,
H. R.
,
Assad
,
M. E. H.
, and
Pabon
,
J. J. G.
,
2019
, “
Thermal Resistance Modeling of Oscillating Heat Pipes for Nanofluids by Artificial Intelligence Approach
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
7
), p.
072402
.10.1115/1.4043569
104.
Dawahdeh
,
A.
,
Oh
,
J.
,
Zhai
,
T.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics—Machine Learning Prediction of Machinery Coupling Windage Heating and Power Loss
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082201
.10.1115/1.4051351
105.
Smith
,
R.
, and
Dutta
,
S.
,
2021
, “
Conjugate Thermal Optimization With Unsupervised Machine Learning
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
5
), p.
052901
.10.1115/1.4049842
106.
McClure
,
E. R.
, and
Carey
,
V. P.
,
2021
, “
Genetic Algorithm and Deep Learning to Explore Parametric Trends in Nucleate Boiling Heat Transfer Data
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
12
), p.
121602
.10.1115/1.4052435
107.
Kang
,
M.
, and
Kwon
,
B.
,
2021
, “
Deep Learning of Forced Convection Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
2
), p.
021801
.10.1115/1.4052893
108.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
109.
Scalabrin
,
G.
, and
Piazza
,
L.
,
2003
, “
Analysis of Forced Convection Heat Transfer to Supercritical Carbon Dioxide Inside Tubes Using Neural Networks
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1139
1154
.10.1016/S0017-9310(02)00382-4
110.
Olson
,
D. A.
, and
Allen
,
D.
,
1998
, “Heat Transfer in Turbulent Supercritical Carbon Dioxide Flowing in a Heated Horizontal Tube,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 6234.
111.
Chen
,
J.
,
Wang
,
K.-P.
, and
Liang
,
M.-T.
,
2005
, “
Predictions of Heat Transfer Coefficients of Supercritical Carbon Dioxide Using the Overlapped Type of Local Neural Network
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2483
2492
.10.1016/j.ijheatmasstransfer.2004.12.040
112.
Pesteei
,
S.
, and
Mehrabi
,
M.
,
2010
, “
Modeling of Convection Heat Transfer of Supercritical Carbon Dioxide in a Vertical Tube at Low Reynolds Numbers Using Artificial Neural Network
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
901
906
.10.1016/j.icheatmasstransfer.2010.05.018
113.
Jiang
,
P.-X.
,
Zhang
,
Y.
,
Xu
,
Y.-J.
, and
Shi
,
R.-F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
998
1011
.10.1016/j.ijthermalsci.2007.08.003
114.
Chu
,
X.
,
Chang
,
W.
,
Pandey
,
S.
,
Luo
,
J.
,
Weigand
,
B.
, and
Laurien
,
E.
,
2018
, “
A Computationally Light Data-Driven Approach for Heat Transfer and Hydraulic Characteristics Modeling of Supercritical Fluids: From DNS to DNN
,”
Int. J. Heat Mass Transfer
,
123
, pp.
629
636
.10.1016/j.ijheatmasstransfer.2018.02.115
115.
Bae
,
Y.-Y.
,
Kim
,
H.-Y.
, and
Yoo
,
T. H.
,
2011
, “
Effect of a Helical Wire on Mixed Convection Heat Transfer to Carbon Dioxide in a Vertical Circular Tube at Supercritical Pressures
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
340
351
.10.1016/j.ijheatfluidflow.2010.06.013
116.
Kim
,
H. Y.
,
Kim
,
H.
,
Song
,
J. H.
,
Cho
,
B. H.
, and
Bae
,
Y. Y.
,
2007
, “
Heat Transfer Test in a Vertical Tube Using CO2 at Supercritical Pressures
,”
J. Nucl. Sci. Technol.
,
44
(
3
), pp.
285
293
.10.1080/18811248.2007.9711284
117.
Mokry
,
S.
,
Pioro
,
I.
, and
Duffey
,
R.
,
2009
, “
Experimental Heat Transfer to Supercritical CO2 Flowing Upward in a Bare Vertical Tube
,”
Supercritical CO2 Power Cycle Symposium
, Troy, NY, Apr. 29–30.
118.
Cho
,
B.-H.
,
Kim
,
Y.-I.
, and
Bae
,
Y.-Y.
,
2009
, “
Prediction of a Heat Transfer to CO2 Flowing in an Upward Path at a Supercritical Pressure
,”
Nucl. Eng. Technol.
,
41
(
7
), pp.
907
920
.10.5516/NET.2009.41.7.907
119.
Lei
,
X.
,
Zhang
,
Q.
,
Zhang
,
J.
, and
Li
,
H.
,
2017
, “
Experimental and Numerical Investigation of Convective Heat Transfer of Supercritical Carbon Dioxide at Low Mass Fluxes
,”
Appl. Sci.
,
7
(
12
), p.
1260
.10.3390/app7121260
120.
Song
,
J.
,
Kim
,
H.
,
Kim
,
H.
, and
Bae
,
Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.10.1016/j.supflu.2007.11.013
121.
Gupta
,
S.
,
Saltanov
,
E.
, and
Pioro
,
I.
,
2013
, “
Heat Transfer Correlation for Supercritical Carbon Dioxide Flowing in Vertical Bare Tubes
,”
ASME
Paper No. ICONE21-16453.10.1115/ICONE21-16453
122.
Zahlan
,
H.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures
,”
Nucl. Eng. Des.
,
289
, pp.
92
107
.10.1016/j.nucengdes.2015.04.013
123.
Jiang
,
K.
,
2015
, “
An Experimental Facility for Studying Heat Transfer in Supercritical Fluids
,” Master's thesis,
University of Ottawa
, Ottawa, ON, Canada.
124.
Ye
,
K.
,
Zhang
,
Y.
,
Yang
,
L.
,
Zhao
,
Y.
,
Li
,
N.
, and
Xie
,
C.
,
2019
, “
Modeling Convective Heat Transfer of Supercritical Carbon Dioxide Using an Artificial Neural Network
,”
Appl. Therm. Eng.
,
150
, pp.
686
695
.10.1016/j.applthermaleng.2018.11.031
125.
Kim
,
H.-Y.
,
Kim
,
H.-R.
,
Kang
,
D.-J.
,
Song
,
J.-H.
, and
Bae
,
Y.-Y.
,
2008
, “
Experimental Investigations on Heat Transfer to CO2 Flowing Upward in a Narrow Annulus at Supercritical Pressures
,”
Nucl. Eng. Technol.
,
40
(
2
), pp.
155
162
.10.5516/NET.2008.40.2.155
126.
Zhu
,
B.
,
Zhu
,
X.
,
Xie
,
J.
,
Xu
,
J.
, and
Liu
,
H.
,
2021
, “
Heat Transfer Prediction of Supercritical Carbon Dioxide in Vertical Tube Based on Artificial Neural Networks
,”
J. Therm. Sci.
,
30
(
5
), pp.
1751
1767
.10.1007/s11630-021-1459-7
127.
Lei
,
X.
,
Zhang
,
J.
,
Gou
,
L.
,
Zhang
,
Q.
, and
Li
,
H.
,
2019
, “
Experimental Study on Convection Heat Transfer of Supercritical CO2 in Small Upward Channels
,”
Energy
,
176
, pp.
119
130
.10.1016/j.energy.2019.03.109
128.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
High-Temperature Supercritical Pressure Water Loop Part IV: Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Super-Critical Pressures
,”
Westinghouse Electric Corporation, Atomic Power Division
,
Pittsburgh
, Report No. WCAP-2056.
129.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
130.
Yu
,
J.
,
Jia
,
B.
,
Wu
,
D.
, and
Wang
,
D.
,
2009
, “
Optimization of Heat Transfer Coefficient Correlation at Supercritical Pressure Using Genetic Algorithms
,”
Heat Mass Transfer
,
45
(
6
), pp.
757
766
.10.1007/s00231-008-0475-4
131.
Sun
,
F.
,
Xie
,
G.
, and
Li
,
S.
,
2021
, “
An Artificial-Neural-Network Based Prediction of Heat Transfer Behaviors for In-Tube Supercritical CO2 Flow
,”
Appl. Soft Comput. J.
,
102
, p.
107110
.10.1016/j.asoc.2021.107110
132.
Sun
,
F.
,
Xie
,
G.
,
Song
,
J.
,
Li
,
S.
, and
Markides
,
C. N.
,
2021
, “
Thermal Characteristics of in-Tube Upward Supercritical CO2 Flows and a New Heat Transfer Prediction Model Based on Artificial Neural Networks (ANN)
,”
Appl. Therm. Eng.
,
194
, p.
117067
.10.1016/j.applthermaleng.2021.117067
133.
Rajendra Prasad
,
K. S.
,
Krishna
,
V.
,
Sachin Bharadwaj
,
M.
, and
Ponangi
,
B. R.
,
2022
, “
Turbulent Heat Transfer Characteristics of Supercritical Carbon Dioxide for a Vertically Upward Flow in a Pipe Using Computational Fluid Dynamics and Artificial Neural Network
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
1
), p.
011802
.10.1115/1.4052687
You do not currently have access to this content.