Abstract

To quantify the benefits of reducing entropy production and improving hydrothermal performance with varied thermal air characteristics through different perforated heat sinks, a numerical study was conducted. Various numbers of circular perforations are studied from 0 perforations to 5 perforations. In addition, perforation configuration is considered, such as circular (3CP), square (3SP), elliptic (3EP), and triangular (3TP) perforated pinned heat sinks, as well as three slotted pinned heat sinks (SPHSs) (3S, 6S, and 10S) and four notched pinned heat sinks (NPHSs) (3S, 6S, and 10S) (2.5 N, 5 N, 7.5 N, and 10 N). The numerical results showed that the 5-circular perforations heat sink model (5CP) generates the minimum entropy generation and the maximum hydrothermal performance (HTP), around 17% and 1.2, respectively compared to the zero-perforation model, while the circular perforated pinned heat sink (3CP) model produces the maximum reduction in entropy generation, generally around 13% with moderated HTP of 1.1. Moreover, when comparing slotted and notched pinned heat sinks, the 10S slotted and 10 N notched pinned heat sinks achieve 1.45 of HTP.

References

1.
Al-Damook
,
A.
, and
Azzawi
,
I. D.
,
2021
, “
The Thermohydraulic Characteristics and Optimization Study of Radial Porous Heat Sinks Using Multi-Objective Computational Method
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082701
.10.1115/1.4051126
2.
Ali
,
S. K.
,
Azzawi
,
I. D.
, and
Khadom
,
A. A.
,
2021
, “
Experimental Validation and Numerical Investigation for Optimization and Evaluation of Heat Transfer Enhancement in Double Coil Heat Exchanger
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100862
.10.1016/j.tsep.2021.100862
3.
Faraj
,
A. F.
,
Azzawi
,
I. D.
, and
Yahya
,
S. G.
,
2020
, “
Pitch Variations Study on Helically Coiled Pipe in Turbulent Flow Region Using CFD
,”
Int. J. Heat Technol.
,
38
(
4
), pp.
775
784
.10.18280/ijht.380402
4.
Al-Damook
,
A.
, and
Azzawi
,
I. D.
,
2021
, “
Multi-Objective Numerical Optimum Design of Natural Convection in Different Configurations of Concentric Horizontal Annular Pipes Using Different Nanofluids
,”
Heat Mass Transfer
,
57
(
9
), pp.
1543
1557
.10.1007/s00231-021-03051-8
5.
Azzawi
,
I. D.
,
Yahya
,
S. G.
,
Al-Rubaye
,
L. A. H.
, and
Ali
,
S. K.
,
2021
, “
Heat Transfer Enhancement of Different Channel Geometries Using Nanofluids and Porous Media
,”
Int. J. Heat Technol.
,
39
(
4
), pp.
1197
206
.10.18280/ijht.390417
6.
Azzawi
,
I. D.
, and
Al-Damook
,
A.
,
2022
, “
Multi-Objective Optimum Design of Porous Triangular Chamber Using RSM
,”
Int. Commun. Heat Mass Transfer
,
130
, p.
105774
.10.1016/j.icheatmasstransfer.2021.105774
7.
Dhumne
,
A. B.
, and
Farkade
,
H. S.
,
2013
, “
Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement
,”
Int. J. Innovative Technol. Explor. Eng.
,
2
(
5
), pp.
225
230
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.651&rep=rep1&type=pdf
8.
Sohel
,
M. R.
,
Saidur
,
R.
,
Hassan
,
N. H.
,
Elias
,
M. M.
,
Khaleduzzaman
,
S. S.
, and
Mahbubul
,
I. M.
,
2013
, “
Analysis of Entropy Generation Using Nanofluid Flow Through the Circular Microchannel and Minichannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
85
91
.10.1016/j.icheatmasstransfer.2013.05.011
9.
Shi
,
Z.
, and
Dong
,
T.
,
2015
, “
Entropy Generation and Optimization of Laminar Convective Heat Transfer and Fluid Flow in a Microchannel With Staggered Arrays of Pin Fin Structure With Tip Clearance
,”
Energy Convers. Manage.
,
94
, pp.
493
504
.10.1016/j.enconman.2015.02.009
10.
Shahsavar
,
A.
,
Entezari
,
S.
,
Toghraie
,
D.
, and
Barnoon
,
P.
,
2020
, “
Effects of the Porous Medium and Water-Silver Biological Nanofluid on the Performance of a Newly Designed Heat Sink by Using First and Second Laws of Thermodynamics
,”
Chin. J. Chem. Eng.
,
28
(
11
), pp.
2928
2937
.10.1016/j.cjche.2020.07.025
11.
Lan
,
Y.
,
Feng
,
Z.
,
Huang
,
K.
,
Zhang
,
J.
, and
Hu
,
Z.
,
2021
, “
Effects of Truncated and Offset Pin-Fins on Hydrothermal Performance and Entropy Generation in a Rectangular Microchannel Heat Sink With Variable Fluid Properties
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105258
.10.1016/j.icheatmasstransfer.2021.105258
12.
Al-Rashed
,
A. A.
,
Shahsavar
,
A.
,
Rasooli
,
O.
,
Moghimi
,
M. A.
,
Karimipour
,
A.
, and
Tran
,
M. D.
,
2019
, “
Numerical Assessment Into the Hydrothermal and Entropy Generation Characteristics of Biological Water-Silver Nano-Fluid in a Wavy Walled Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
104
, pp.
118
126
.10.1016/j.icheatmasstransfer.2019.03.007
13.
Das
,
B.
, and
Giri
,
A.
,
2014
, “
Second Law Analysis of an Array of Vertical Plate-Finned Heat Sink Undergoing Mixed Convection
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
42
49
.10.1016/j.icheatmasstransfer.2014.04.019
14.
Shahsavar
,
A.
,
Shahmohammadi
,
M.
, and
Askari
,
I. B.
,
2021
, “
The Effect of Inlet/Outlet Number and Arrangement on Hydrothermal Behavior and Entropy Generation of the Laminar Water Flow in a Pin-Fin Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105500
.10.1016/j.icheatmasstransfer.2021.105500
15.
Al-Sallami
,
W.
,
Al-Damook
,
A.
, and
Thompson
,
H. M.
,
2016
, “
A Numerical Investigation of Thermal Airflows Over Strip Fin Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
183
191
.10.1016/j.icheatmasstransfer.2016.03.014
16.
Al-Damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2015
, “
An Experimental and Computational Investigation of Thermal Air Flows Through Perforated Pin Heat Sinks
,”
Appl. Thermal Eng.
,
89
, pp.
365
376
.10.1016/j.applthermaleng.2015.06.036
17.
Al-Damook
,
A.
,
Summers
,
J. L.
,
Kapur
,
N.
, and
Thompson
,
H.
,
2016
, “
Effect of Different Perforations Shapes on the Thermal-Hydraulic Performance of Perforated Pinned Heat Sinks
,”
J. Multidiscip. Eng. Sci. Technol. (JMEST)
,
3
(
4
), pp.
4466
4474
.https://www.jmest.org/wpcontent/uploads/JMEST N42351495.pdf
18.
Al-Sallami
,
W.
,
Al-Damook
,
A.
, and
Thompson
,
H. M.
,
2017
, “
A Numerical Investigation of the Thermal-Hydraulic Characteristics of Perforated Plate Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
121
, pp.
266
277
.10.1016/j.ijthermalsci.2017.07.022
19.
Fadhil
,
A. M.
,
Khalil
,
W. H.
, and
Al‐Damook
,
A.
,
2019
, “
The Hydraulic‐Thermal Performance of Miniature Compact Heat Sinks Using SiO2‐Water Nanofluids
,”
Heat Transfer—Asian Res.
,
48
(
7
), pp.
3101
3114
.10.1002/htj.21532
20.
Al‐Damook
,
A.
,
Alfellag
,
M. A.
, and
Khalil
,
W. H.
,
2020
, “
Three‐Dimensional Computational Comparison of Mini Pinned Heat Sinks Using Different Nanofluids: Part One—the Hydraulic‐Thermal Characteristics
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
591
613
.10.1002/htj.21628
21.
Al‐Damook
,
A.
,
Alfellag
,
M. A.
, and
Khalil
,
W. H.
,
2020
, “
Three‐Dimensional Computational Comparison of Mini‐Pinned Heat Sinks Using Different Nanofluids: Part Two—Energy and Exergy Characteristics
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
441
460
.10.1002/htj.21620
22.
Al-Damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2016
, “
Computational Design and Optimisation of Pin Fin Heat Sinks With Rectangular Perforations
,”
Appl. Therm. Eng.
,
105
, pp.
691
703
.10.1016/j.applthermaleng.2016.03.070
23.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transfer, Part A
60
(
2
), pp.
107
128
.10.1080/10407782.2011.588574
24.
Matsson
,
J. E.
,
2021
,
An Introduction to ANSYS Fluent 2021
,
SDC Publications
.
25.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2010
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill Higher Education
, New York.
26.
Al-Damook
,
A.
,
Summers
,
J. L.
,
Kapur
,
N.
, and
Thompson
,
H.
,
2016
, “
Effect of Temperature-Dependent Air Properties on the Accuracy of Numerical Simulations of Thermal Airflows Over Pinned Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
163
167
.10.1016/j.icheatmasstransfer.2016.08.020
You do not currently have access to this content.