Abstract

A microscopic vision is presented of a dual model of liquids (DML) starting from a solid picture. The task is accomplished first by showing how a series of experimental evidences and theoretical developments on liquid modeling, gathered for the first time, can be framed in a mesoscopic view of liquids, hypothesized as constituted by a population of dynamic aggregates of molecules, diving in an ocean of amorphous liquid. The pseudo-crystals interact with the rest of the liquid through harmonic elastic waves and anharmonic wave-packets propagating within and among the structures. The anharmonic interaction term is derived from “first principles”; it allows the exchange of energy and momentum between the wave packets and the molecule's clusters, determining the displacement of the latter within the medium, and the redistribution of the energy between external Degrees of Freedom (DoF) and internal collective degrees of the clusters. Among the novelties of this model is that it provides quantitative expressions of various extensive thermophysical properties. The introduction of the statistical number of excited DoF allows bypassing the problem of other dual models which are sometimes unable to correctly reproduce the expressions for those thermophysical quantities showing deviations due to the activation/de-activation of internal DoF. The interpretation of the relaxation times is given, their Order-of-Magnitude (OoM) calculated, and the way in which these times are involved in the different phases of the collective dynamics of liquids discussed. A comparison is provided with results obtained in the frame of Phonon theory of Liquid Thermodynamics, as well as the forecasts for the viscoelastic transition regions and with systems exhibiting k-gap. In the last part of the paper, theoretical insights and experiments are suggested as potential directions for future research and developments.

References

1.
Debye
,
P.
,
1912
, “
Zur Theorie Des Specifische Wärmer
,”
Ann. Phys.
,
344
(
14
), pp.
798
839
.
2.
Debye
,
P.
,
1914
,
Vorträge Über Die Kinetische Gastheorie
,
B.G. Teubner
,
Leipzig
, pp.
46
60
.
3.
Brillouin
,
L.
,
1922
, “
Diffusion de la Lumière Wet Des Rayon X Par un Corps Transaparent Homogéne – Influence de L'agitation Thermique
,”
Ann. Phys.
,
9
(
17
), pp.
88
120
.10.1051/anphys/192209170088
4.
Brillouin
,
L.
,
1936
, “
La Chaleur Spécifique Des Liquides et Leur Constitution
,”
J. Phys. Rad, Serie
VII
(
4
), pp.
153
157
.
5.
Frenkel
,
J.
,
1946
,
Kinetic Theory of Liquids
,
Oxford University Press
,
Oxford, UK
.
6.
Landau
,
L.
, and
Lifshitz
,
E. M.
,
1984
,
Physique Statistique
,
Mir
,
Moscou
(Physique Théorique, Tome V).
7.
Chen
,
G.
,
2022
, “
Perspectives on Molecular-Level Understanding of Thermophysics of Liquids and Future Research Directions
,”
ASME J. Heat Transfer
,
144
(
1
), p.
010801
.10.1115/1.4052657
8.
Maxwell
,
J. C.
,
1867
, “
On the Dynamical Theory of Gases
,”
Ph. Trans. R. Soc. London
,
157
, pp.
49
88
.
9.
Hansen
,
J.-P.
, and
McDonalds
,
I. R.
,
2013
,
Theory of Simple Liquids
, IV edn.,
Elsevier
,
Amsterdam
.
10.
Lucas
,
M. R.
,
1938
, “
Sur L'agitation Thermique Des Liquides, Leur Nouvelles Propriétés Thermomécahnique et Leur Conducibilité Calorifique
,”
J. Phys.
,
10
, pp.
410
428
.
11.
Landau
,
L.
,
Placzek
,
G.
,
1934
, “
Structure of the Undisplaced Scattering Line
”,
Z. Phys. Sowjetunion
,
5
, pp.
172
173
;
Landau
,
L.
,
1986
,
Elettrodinamica dei mezzi continui
, §
120
(
Moscow
,
MIR
).
12.
Fabelinskii
,
I.
,
1968
,
Molecular Scattering of Light
, Chap. 2, §, 5,
Plenum Press
,
New York
.
13.
Berne
,
B.
, and
Pecora
,
R.
,
1976
,
Dynamic Light Scattering
,
Wiley
,
New York
.
14.
Egelstaff
,
P. A.
,
1967
,
An Introduction to the Liquid State
, Chap. 10,
Academic Press
,
London & New York
.
15.
Meyer
,
E. H. L.
, and
Ramm
,
W.
,
1932
, “
Die Strukture Der Rayleigh Strahlung
,”
Phys. Zeitschr.
,
33
, pp.
270
275
.
16.
Raghavendra-Rao
,
B. V.
,
1934
, “
Examination of Molecular Scattered Light With a Fabry-Perot Etalon
,”
Proc. Ind. Acad. Sci.
,
1
, pp.
261
268
.10.1007/BF03035565
17.
Grimwall
,
G.
,
1975
, “
The Heat Capacity of Liquid Metals
,”
Phys. Scr.
,
11
(
6
), pp.
381
382
.10.1088/0031-8949/11/6/009
18.
Sköld
,
K.
,
1967
, “
Small Energy Transfer Scattering of Cold Neutrons From Liquid Argon
,”
Phys. Rev. Lett.
,
19
(
18
), pp.
1023
1025
.10.1103/PhysRevLett.19.1023
19.
Cunsolo
,
A.
,
2015
, “
The Terahertz Spectrum of Density Fluctuations of Water: The Viscoelastic Regime
,”
Adv Cond. Matt. Phys.
,
2015
, pp.
137435
137459
.10.1155/2015/137435
20.
Cunsolo, A., Kodituwakku, C. N., Bencivenga, F., Frontzek, M., Leu, B. M., and Said, A. H., 2012, “Transverse Dynamics of Water Across the Melting Point: A Parallel Neutron and X-ray Inelastic Scattering Study,”
Phys. Rev. B
, 85, p. 174305.10.1103/PhysRevB.85.174305
21.
Ruocco
,
G.
,
Sette
,
F.
,
Bergmann
,
U.
,
Krisch
,
M.
,
Masciovecchlo
,
C.
,
Mazzacurati
,
V.
,
Signorelli
,
G.
, and
Verbeni
,
R.
,
1996
, “
Equivalence of the Sound Velocity in Water and Ice at Mesoscopic Lengths
,”
Nature
,
379
(
6565
), pp.
521
523
.10.1038/379521a0
22.
Ruocco
,
G.
, and
Sette
,
F.
,
2008
, “
The History of Fast Sound in Liquid Water
,”
Cond. Matt. Phys.
,
11
(
1
), pp.
29
46
.10.5488/CMP.11.1.29
23.
Cunsolo
,
A.
,
2013
, “
Onset of a Transverse Dynamics in the THz Spectrum of Liquid Water
,”
Mol. Phys.
,
111
(
3
), pp.
455
463
.10.1080/00268976.2012.728258
24.
Cunsolo
,
A.
,
2017
, “
The Terahertz Dynamics of Simplest Fluids Probed by X-Ray Scattering
,”
Int. Rev. Phys. Chem.
,
36
(
3
), pp.
433
539
.10.1080/0144235X.2017.1331900
25.
Sette
,
F.
,
Ruocco
,
G.
,
Krisch
,
M.
,
Bergmann
,
U.
,
Masciovecchio
,
C.
,
Mazzacurati
,
V.
,
Signorelli
,
G.
, and
Verbeni
,
R.
,
1995
, “
Collective Dynamics in Water by High-Energy Resolution Inelastic X-Ray Scattering
,”
Phys. Rev. Lett.
,
75
(
5
), pp.
850
854
.10.1103/PhysRevLett.75.850
26.
Sette
,
F.
,
Ruocco
,
G.
,
Krisch
,
M.
,
Masciovecchio
,
C.
, and
Verbeni
,
R.
,
1996
, “
Collective Dynamics in Water by Inelastic X-Ray Scattering
,”
Phys. Scr.
,
T66
, pp.
48
56
.10.1088/0031-8949/1996/T66/006
27.
Sette
,
F.
,
Ruocco
,
G.
,
Krisch
,
M.
,
Masciovecchio
,
C.
,
Verbeni
,
R.
, and
Bergmann
,
U.
,
1996
, “
Transition From Normal to Fast Sound in Liquid Water
,”
Phys. Rev. Lett.
,
77
(
1
), pp.
83
86
.10.1103/PhysRevLett.77.83
28.
Ruocco
,
G.
,
Sette
,
F.
,
Krisch
,
M.
,
Bergmann
,
U.
,
Masciovecchio
,
C.
, and
Verbeni
,
R.
,
1996
, “
Line Broadening in the Collective Dynamics of Liquid and Solid Water
,”
Phys. Rev. B
,
54
(
21
), pp.
14892
14895
.10.1103/PhysRevB.54.14892
29.
Sampoli
,
M.
,
Ruocco
,
G.
, and
Sette
,
F.
,
1997
, “
Mixing of Longitudinal and Transverse Dynamics in Liquid Water
,”
Phys. Rev. Lett.
,
79
(
9
), pp.
1678
1681
.10.1103/PhysRevLett.79.1678
30.
Sette
,
F.
,
Krisch
,
M.
,
Masciovecchio
,
C.
,
Ruocco
,
G.
, and
Monaco
,
G.
,
1998
, “
Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-Ray Scattering
,”
Sci.
,
280
(
5369
), pp.
1550
1555
.10.1126/science.280.5369.1550
31.
Ruocco
,
G.
, and
Sette
,
F.
,
1999
, “
The High-Frequency Dynamics of Liquid Water
,”
J. Phys. Cond. Matt
,
11
(
24
), pp.
R259
R293
.10.1088/0953-8984/11/24/202
32.
Monaco
,
G.
,
Cunsolo
,
A.
,
Ruocco
,
G.
, and
Sette
,
F.
,
1999
, “
Viscoelastioc Behaviour of Water in the THz Frequency Range: An Inelastic X-Ray Study
,”
Phys. Rev. E
,
60
(
5
), pp.
5505
5521
.10.1103/PhysRevE.60.5505
33.
Scopigno
,
T.
,
Balucani
,
U.
,
Ruocco
,
G.
, and
Sette
,
F.
,
2002
, “
Inelastic X-Ray Scattering and the High-Frequency Dynamics of Disordered Systems
,”
Phys. B
,
318
(
4
), pp.
341
349
.10.1016/S0921-4526(02)00803-7
34.
Cunsolo
,
A.
,
Ruocco
,
G.
,
Sette
,
F.
,
Masciovecchio
,
C.
,
Mermet
,
A.
,
Monaco
,
G.
,
Sampoli
,
M.
, and
Verbeni
,
R.
,
1999
, “
Experimental Determination of the Structural Relaxation in Liquid Water
,”
Phys. Rev. Lett.
,
82
(
4
), pp.
775
778
.10.1103/PhysRevLett.82.775
35.
Cunsolo
,
A.
,
2017
, “
Inelastic X-Ray Scattering as a Probe of the Transition Between the Hydrodynamic and the Single-Particle Regimes in Simple Fluids
,”
X-Ray Scattering
, Chap. 1,
Intech Open Ares, Alicia Esther Ed
., London, UK, in preparation.10.5772/66126
36.
Grimsditch
,
M.
,
Bhadra
,
R.
, and
Torell
,
L. M.
,
1989
, “
Shear Waves Through the Glass-Liquid Transformation
,”
Phys. Rev. Lett.
,
62
(
22
), pp.
2616
2619
.10.1103/PhysRevLett.62.2616
37.
Giordano
,
V. M.
, and
Monaco
,
G.
,
2010
, “
Fingerprints of Order and Disorder on High-Frequency Dynamics of Liquids
,”
PNAS
,
107
(
51
), pp.
21985
21989
.10.1073/pnas.1006319107
38.
Fiks
,
V. B.
,
1961
, “
On the Thermodiffusion Mechanism in Fluids
,”
Sov. Phys.-Solid State
,
3
, pp.
724
726
.
39.
Fiks
,
V. B.
,
1964
, “
Electron Drag and Thermal Diffusion in Metals
,”
Sov. Phys.-Solid State
,
5
, pp.
2549
2552
.
40.
Andreev
,
A. F.
,
1971
, “
Two-Liquid Effects in a Normal Liquid
,”
JEPT
,
32
(
5
), pp.
987
990
.
41.
Gaeta
,
F. S.
,
1969
, “
Radiation Pressure Theory of Thermal Diffusion in Liquids
,”
Phys. Rev. A
,
182
(
1
), pp.
289
296
.10.1103/PhysRev.182.289
42.
Gaeta
,
F. S.
,
Peluso
,
F.
,
Mita
,
D. G.
,
Albanese
,
C.
, and
Castagnolo
,
D.
,
1993
, “
Phonon-Particle Interactions and Transport Processes in Liquids
,”
Phys. Rev. E
,
47
(
2
), pp.
1066
1077
.10.1103/PhysRevE.47.1066
43.
Gaeta
,
F. S.
,
Albanese
,
C.
,
Mita
,
D. G.
, and
Peluso
,
F.
,
1994
, “
Phonons in Liquids, Onsager's Reciprocal Relations and the Heats of Transport
,”
Phys. Rev. E
,
49
(
1
), pp.
433
444
.10.1103/PhysRevE.49.433
44.
Gaeta
,
F. S.
, and
Mita
,
D. G.
,
1978
, “
Nonisothermal Mass Transport in Porous Media
,”
J. Membr. Sci.
,
3
(
2
), pp.
191
214
.10.1016/S0376-7388(00)83022-7
45.
Gaeta
,
F. S.
, and
Mita
,
D. G.
,
1979
, “
Thermal Diffusion Across Porous Partitions: The Process of Thermodialysis
,”
J. Phys. Chem.
,
83
(
17
), pp.
2276
2285
.10.1021/j100480a020
46.
Kirkpatrick
,
T.
,
Cohen
,
E. G. D.
, and
Dorfman
,
J. R.
,
1979
, “
Kinetic Theory of Light Scattering From a Fluid Not in Equilibrium
,”
Phys. Rev. Lett.
,
42
(
14
), pp.
862
865
.10.1103/PhysRevLett.42.862
47.
Kirkpatrick
,
T.
, and
Cohen
,
E. G. D.
,
1980
, “
Light Scattering in a Fluid Far Form Equilibrium
,”
Phys. Lett.
,
78
(
4
), pp.
350
353
.10.1016/0375-9601(80)90393-X
48.
Kirkpatrick
,
T.
,
Cohen
,
E. G. D.
, and
Dorfman
,
J. R.
,
1982
, “
Fluctuations in a Nonequilibrium Staedy State: Basic Equations
,”
Phys. Rev. A
,
26
(
2
), pp.
950
971
.10.1103/PhysRevA.26.950
49.
Kirkpatrick
,
T.
,
Cohen
,
E. G. D.
, and
Dorfman
,
J. R.
,
1982
, “
Light Scattering by a Fluid in a Nonequilibrium Steady State. I. Small Gradients
,”
Phys. Rev. A
,
26
(
2
), pp.
972
994
.10.1103/PhysRevA.26.972
50.
Kirkpatrick
,
T.
,
Cohen
,
E. G. D.
, and
Dorfman
,
J. R.
,
1982
, “
Light Scattering by a Fluid in a Nonequilibrium Steady State. II. Large Gradients
,”
Phys. Rev. A
,
26
(
2
), pp.
995
1014
.10.1103/PhysRevA.26.995
51.
Ronis
,
D.
,
Procaccia
,
I.
, and
Oppenheim
,
I.
,
1979
, “
Statistical Mechanics of Stationary States. III. Fluctuations in Dense Fluids With Application of Light Scattering
,”
Phys. Rev. A
,
19
(
3
), pp.
1324
1339
.10.1103/PhysRevA.19.1324
52.
Ronis
,
D.
, and
Procaccia
,
I.
,
1982
, “
Nonlinear Resonant Coupling Between Shear and Heat Fluctuations in Fluids Far From Equilibrium
,”
Phys. Rev. A
,
26
(
3
), pp.
1812
1815
.10.1103/PhysRevA.26.1812
53.
Beysens
,
D.
,
Garrabos
,
Y.
, and
Zalczer
,
G.
,
1980
, “
Experimental Evidence for Brillouin Asymmetry Induced by a Temperature Gradient
,”
Phy. Rev. Lett.
,
45
(
6
), pp.
403
406
.10.1103/PhysRevLett.45.403
54.
Law
,
B. M.
,
Gammon
,
R. W.
, and
Sengers
,
J. V.
,
1988
, “
Light-Scattering Observations of Long-Range Correlations in a Nonequilibrium Fluid
,”
Phys. Rev. Lett.
,
60
(
15
), pp.
1554
1557
.10.1103/PhysRevLett.60.1554
55.
Segrè
,
P. N.
,
Gammon
,
R. W.
,
Sengers
,
J. V.
, and
Law
,
B. M.
,
1992
, “
Rayleigh Scattering in a Liquid Far From Thermal Equilibrium
,”
Phys. Rev. A
,
45
(
2
), pp.
714
724
.10.1103/PhysRevA.45.714
56.
Li
,
W. B.
,
Segrè
,
P. N.
,
Gammon
,
R. W.
, and
Sengers
,
J. V.
,
1994
, “
Small-Angle Rayleigh Scattering From Nonequilibrium Fluctuations in Liquids and Liquid Mixtures
,”
Phys. A
,
204
(
1–4
), pp.
399
436
.10.1016/0378-4371(94)90440-5
57.
Rahman
,
A.
, and
Stillinger
,
F.
,
1974
, “
Propagation of Sound in Water. A Molecular-Dynamics Study
,”
Phys. Rev. A
,
10
(
1
), pp.
368
378
.10.1103/PhysRevA.10.368
58.
Teixeira
,
J.
,
Bellissent-Funel
,
M. C.
,
Chen
,
S. H.
, and
Dorner
,
B.
,
1985
, “
Observation of New Short-Wavelength Excitations in Heavy Water by Coherent Inelastic Neutron Scattering
,”
Phys. Rev. Lett.
,
54
(
25
), pp.
2681
2683
.10.1103/PhysRevLett.54.2681
59.
Balucani
,
U.
,
Ruocco
,
G.
,
Torcini
,
A.
, and
Vallauri
,
R.
,
1993
, “
Fast Sound in Liquid Water
,”
Phys. Rev. E
,
47
(
3
), pp.
1677
1684
.10.1103/PhysRevE.47.1677
60.
Croccolo
,
F.
,
Ortiz de Zárate
,
J. M.
, and
Sengers
,
J. V.
,
2016
, “
Non Local Fluctuations Phenomena in Liquids
,”
Eur. Phys. J. E
,
39
(
12
), pp.
125
136
.10.1140/epje/i2016-16125-3
61.
Bolmatov
,
D.
, and
Trachenko
,
K.
,
2011
, “
Liquid Heat Capacity in the Approach From the Solid State: Anharmonic Theory
,”
Phys. Rev. B
,
84
(
5
), p.
054106
.10.1103/PhysRevB.84.054106
62.
D. Bolmatov
,
D.
,
Brazhkin
,
V. V.
, and
Trachenko
,
K.
,
2012
, “
The Phonon Theory of Liquid Thermodynamics
,”
Sci. Rep.
,
2
(
1
), pp.
431
427
.10.1038/srep00421
63.
Brazhkin
,
V. V.
, and
Trachenko
,
K.
,
2012
, “
What Separates a Liquid From a Gas?
,”
Phys. Today
,
65
(
11
), pp.
68
69
.10.1063/PT.3.1796
64.
Bolmatov
,
D.
,
Musaev
,
E. T.
, and
Trachenko
,
K.
,
2013
, “
Symmetry Breaking Gives Rise to Energy Spectra of Three States of Matter
,”
Sci. Rep.
,
3
(
1
), pp.
2794
2798
.10.1038/srep02794
65.
Trachenko
,
K.
, and
Brazhkin
,
V. V.
,
2016
, “
Collective Modes and Thermodynamics of the Liquid State
,”
Rep. Prog. Phys.
,
79
(
1
), pp.
016502
016538
.10.1088/0034-4885/79/1/016502
66.
Balucani
,
U.
,
Brodholt
,
J. P.
, and
Vallauri
,
R.
,
1996
, “
Dynamical Properties of Liquid Water
,”
J. Phys. Cond. Mat.
,
47
(
8
), pp.
9269
9274
.
67.
Bolmatov
,
D.
,
Brazhkin
,
V. V.
,
Fomin
,
Y. D.
,
Ryzhov
,
V. N.
, and
Trachenko
,
K.
,
2013
, “
Evidence for Structural Crossover in the Supercritical State
,”
J. Chem. Phys.
,
139
(
23
), p.
234501
.10.1063/1.4844135
68.
Trachenko
,
K.
, and
Brazhkin
,
V. V.
,
2013
, “
Duality of Liquids
,”
Sci. Rep.
,
3
(
1
), pp.
2188
2193
.10.1038/srep02188
69.
Bolmatov
,
D.
,
Zhernenkov
,
M.
,
Zav'yalov
,
D.
,
Tkachev
,
S. N.
,
Cunsolo
,
A.
, and
Cai
,
Y. Q.
,
2015
, “
The Frenkel Line: A Direct Experimental Evidence for the New Thermodynamic Boundary
,”
Sci. Rep.
,
5
(
1
), p.
15850
.10.1038/srep15850
70.
Bolmatov
,
D.
,
Zhernenkov
,
M.
,
Zav'yalov
,
D.
,
Stoupin
,
S.
,
Cunsolo
,
A.
, and
Cai
,
Y. Q.
,
2016
, “
Thermally Triggered Phononic Gaps in Liquids at THz Scale
,”
Sci. Rep.
,
6
(
1
), p.
19469
.10.1038/srep19469
71.
Bolmatov
,
D.
,
Zav'yalov
,
D.
,
Zhernenkov
,
M.
,
Musaev
,
E. T.
, and
Cai
,
Y. Q.
,
2015
, “
Unified Phonon-Based Approach to the Thermodynamics of Solid, Liquid and Gas States
,”
Ann. Phys.
,
363
, pp.
221
242
.10.1016/j.aop.2015.09.018
72.
Bolmatov
,
D.
,
Zhernenkov
,
M.
,
Zav'yalov
,
D.
,
Stoupin
,
S.
,
Cai
,
Y. Q.
, and
Cunsolo
,
A.
,
2015
, “
Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids
,”
J. Phys. Chem. Lett.
,
6
(
15
), pp.
3048
3053
.10.1021/acs.jpclett.5b01338
73.
Eckart
,
C.
,
1948
, “
The Thermodynamics of Irreversible Processes. IV: The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
,
73
(
4
), pp.
373
382
.10.1103/PhysRev.73.373
74.
Eckart
,
C.
,
1948
, “
The Theory of Anelastic Fluid
,”
Rev. Mod. Phys.
,
20-1
, pp.
232
235
.
75.
Jhon
,
M. S.
, and
Eyring
,
H.
,
1971
, “
The Significant Structure Theory of Liquids
,”
Physical Chemistry—an Advanced Treatise: Liquid State
,
H.
Eyring
,
D.
Henderson
, and
W.
Jost
, eds.
, Academic Press
,
New York
, pp.
335
375
.
76.
Peluso
,
F.
,
2021
, “
Isochoric Specific Heat in the Dual Model of Liquids
,”
Liquids
,
1
(
1
), pp.
77
95
.10.3390/liquids1010007
77.
Zwanzig
,
R.
,
1961
,
Lectures in Theoretical Physics
,
W.
Brittin
,
B. W.
Downs
,
J.
Downs
,
3
,
Interscience Publisher Inc
.,
New York
, pp.
106
141
.
78.
Mori
,
H.
,
1965
, “
A Continued-Fraction Representation of the Time-Correlation Functions
,”
Prog. Theor. Phys.
,
34
(
3
), pp.
399
416
.10.1143/PTP.34.399
79.
Peluso
,
F.
,
2003
, “
Long-Range Collective Dynamics and Relaxation Phenomena in a Dual Model of Liquids
,”
Proceedings of JETC8 International Conference on Thermodynamics
, Barcelona, Spain, Sept. 2nd–5th, pp.
113
122
.
80.
Peluso
,
F.
, “
How does heat propagate in liquids?
” In preparation.
81.
Mercier
,
J.
,
1956
, “
De la Pression de Radiation Dans le Fluides
,”
J. Phys. Rad.
,
17
(
5
), pp.
401
404
.10.1051/jphysrad:01956001705040100
82.
Joyce
,
W. B.
,
1975
, “
Radiation Force and the Classical Mechanics of Photons and Phonons
,”
Am. J. Phys.
,
43
(
3
), pp.
245
255
.10.1119/1.9880
83.
Brillouin
,
L.
,
1964
,
Tensors in Mechanics and Elasticity
,
Academic Press
,
New York
, pp.
240
243
.
84.
Smith
,
W. E.
,
1971
, “
Generalization of the Boltzmann-Ehrenfest Adiabatic Theorem in Acoustics
,”
J. Acoust. Soc. Am.
,
50
(
1B
), pp.
386
388
.10.1121/1.1912647
85.
Gaeta
,
F. S.
,
Ascolese
,
E.
, and
Tomicki
,
B.
,
1991
, “
Radiation Forces Associated With Heat Propagation in Nonisothermal Systems
,”
Phys. Rev. A
,
44
(
8
), pp.
5003
5017
.10.1103/PhysRevA.44.5003
86.
Boltzmann
,
L.
,
1902
,
Leçons Sur la Théorie Des Gaz
, Chaps. 2–11,
Gauthiers-Villars
,
Paris
.
87.
Ghandili
,
A.
, and
Moeini
,
V.
,
2022
, “
A General Model for Isochoric Heat Capacity of Matter States by Introducing Thermodynamic Dimension Concept
,”
Fluid Phase Eq.
,
555
, p.
113355
.10.1016/j.fluid.2021.113355
88.
Zhao
,
Z.
,
Wingert
,
M. C.
,
Chen
,
R.
, and
Garay
,
J. E.
,
2021
, “
Phonon Gas Model Fro Thermal Conductivity of Dense, Strongly Interacting Liquids
,”
J. Appl. Phys.
,
129
(
23
), p.
235101
.10.1063/5.0040734
89.
Proctor
,
J. E.
,
2020
, “
Modeling of Liquid Internal Energy and Heat Capacity Over aa Wide Pressure-Temperature Range From First Principles
,”
Phys. Fluids
,
32
(
10
), p.
107105
.10.1063/5.0025871
90.
Proctor
,
J. E.
, and
Maynard-Casely
,
H.
,
2020
,
The Liquid and Supercritical States of Matter
,
CRC Press
,
Boca Raton
.
91.
Cummins
,
H. Z.
, and
Gammon
,
R. W.
,
1966
, “
Rayleigh and Brillouin Scattering in Liquids: The Landau-Placzek Ratio
,”
J. Chem. Phys.
,
44
(
7
), pp.
2785
2796
.10.1063/1.1727126
92.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.10.1103/PhysRev.37.405
93.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes II
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.10.1103/PhysRev.38.2265
94.
De Groot
,
S. R.
, and
Mazur
,
P.
,
1984
,
Non-Equilibrum Thermodynamics
,
Dover Pub. Inc
,
New York
.
95.
Zaccone
,
A.
, and
Baggioli
,
M.
,
2021
, “
Universal Law for the Vibrational Density of States of Liquids
,”
PNAS
,
118
(
5
), pp.
1
3.
10.1073/pnas.2022303118
96.
Stamper
,
C.
,
2022
, “
Experimental Confirmation of the Universal Law for the Vibrational Density of States of Liquids
,”
J. Phys. Chem.
,
13
, pp.
3105
3111
.10.1021/acs.jpclett.2c00297
97.
Baggioli
,
M.
, and
Zaccone
,
A.
,
2021
, “
Explaining the Specific Heat of Liquids Based on the Instantaneous Normal Modes
,”
Phys. Rev. E
,
104
(
1
), p.
014103
.10.1103/PhysRevE.104.014103
98.
Esposito
,
A.
,
Krichevsky
,
R.
, and
Nicolis
,
A.
,
2019
, “
Gravitational Mass Carried by Sound Waves
,”
Phys. Rev. Lett.
,
122
(
8
), p.
084501
.10.1103/PhysRevLett.122.084501
99.
Robertson
,
K.
,
2021
, “
The Demos Haunting Thermodynamics
,”
Phys. Today
,
74
(
11
), pp.
44
48
.10.1063/PT.3.4881
100.
Albanese
,
C.
,
Mantile
,
A.
, and
Peluso
,
F.
,
2002
, “
A New Thermoelastic Model for Thermal Radiation Pressure
,”
Entropie
,
239–240
, pp.
37
40
.
101.
Herzfeld
,
K. F.
, and
Litovitz
,
T. A.
,
1959
,
Absorption and Dispersion of Ultrasonic Waves
,
Academic Press
,
New York
.
102.
Baggioli
,
M.
,
Vasin
,
M.
,
Brazhkin
,
V.
, and
Trachenko
,
K.
,
2020
, “
Gapped Momentum States
,”
Phys. Rep.
,
865
, pp.
1
44
.10.1016/j.physrep.2020.04.002
103.
Baggioli
,
M.
,
Landry
,
M.
, and
Zaccone
,
A.
,
2022
, “
Deformations, Relaxations and Broken Symmetries in Liquids, Solids and Glasses: A Unified Topological Theory
,”
Phys. Rev. E
,
105
(
2
), p.
024602
.10.1103/PhysRevE.105.024602
104.
Nettleton
,
R. E.
,
1959
, “
Compressional Relaxation in Liquids
,”
J. Acoust. Soc. Am.
,
31
(
5
), pp.
557
567
.10.1121/1.1907752
105.
Nettleton
,
R. E.
,
1959
, “
Thermodynamics of Transport Processes in Liquids
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
95
99
.10.1122/1.548845
106.
Nettleton
,
R. E.
,
1960
, “
Relaxation Theory of Thermal Conduction in Liquids
,”
Phys. Fluids
,
3
(
2
), pp.
216
225
.10.1063/1.1706020
107.
Callen
,
H. B.
, and
Welton
,
T. A.
,
1951
, “
Irreversibility and Generalized Noise
,”
Phys. Rev.
,
83
(
1
), pp.
34
40
.10.1103/PhysRev.83.34
108.
Zaccone
,
A.
, and
Scossa-Romano
,
E.
,
2011
, “
Approximate Analytical Description of the Non Affine Response of Amorphous Solids
,”
Phys. Rev. B
,
83
(
18
), p.
184205
.10.1103/PhysRevB.83.184205
109.
Noirez
,
L.
, and
Baroni
,
P.
,
2010
, “
Revealing the Solid-Like Nature of Glycerol at Ambient Temperature
,”
J. Mol. Struct.
,
972
(
1–3
), pp.
16
21
.10.1016/j.molstruc.2010.02.013
110.
Noirez
,
L.
, and
Baroni
,
P.
,
2012
, “
Identification of a Low-Frequency Elastic Behaviour in Liquid Water
,”
J. Phys. Cond. Mat.
,
24
(
37
), pp.
372101
372107
.10.1088/0953-8984/24/37/372101
111.
Palyulin
,
V. V.
,
Ness
,
C.
,
Milkus
,
R.
,
Elder
,
R. M.
,
Sirk
,
T. W.
, and
Zaccone
,
A.
,
2018
, “
Parameter-Free Predictions of the Viscoelastic Response of Glassy Polymers From Nonaffine Lattice Dynamics
,”
Soft Mat.
,
14
(
42
), pp.
8475
8482
.10.1039/C8SM01468J
112.
Zaccone
,
A.
, and
Trachenko
,
K.
,
2020
, “
Explaining the Low-Frequency Shear Elasticity of Confined Liquids
,”
PNAS
,
117
(
33
), pp.
19653
19655
.10.1073/pnas.2010787117
113.
Zaccone
,
A.
, and
Noirez
,
L.
,
2021
, “
Universal GL3 Law for the Low-Frequency Shear Modulus of Confined Liquids
,”
J. Phys. Chem. Lett.
,
12
, pp.
650
657
.10.1021/acs.jpclett.0c02953
114.
Phillips
,
A. E.
,
2021
, “
Universal L-3 Finite-Size Effects in the Viscoelasticity of Amorphous Systems
,”
Phys. Rev. Mat.
,
5
, p.
035602
.10.1103/PhysRevMaterials.5.035602
115.
Kume
,
E.
,
Baroni
,
P.
, and
Noirez
,
L.
,
2020
, “
Strain-Induced Violation of Temperature Uniformity in Mesoscale Liquids
,”
Sci. Rep.
,
10
(
1
), pp.
13340
13346
.10.1038/s41598-020-69404-1
116.
Kune
,
E.
,
Zaccone
,
A.
, and
Noirez
,
L.
,
2021
, “
Unexpected Thermoelastic Effects in Liquid Glycerol by Mechanical Deformation
,”
Phys. Fluids
,
33
, p.
072007
.10.1063/5.0051587
117.
Kume
,
E.
, and
Noirez
,
L.
,
2021
, “
Identification of Thermal Response of Mesoscopic Liquids Under Mechanical Excitations: From Harmonic to Nonharmonic Thermal Wave
,”
J. Phys. Chem. B
,
125
(
30
), pp.
8652
8658
.10.1021/acs.jpcb.1c04362
118.
Noirez
,
L.
, and
Peluso
,
F.
,
Private communication
.
119.
Nicolis
,
A.
, and
Penco
,
R.
,
2018
, “
Mutual Interactions of Phonons, Rotons and Gravity
,”
Phys. Rev. B
,
97
(
13
), pp.
134516
134553
.10.1103/PhysRevB.97.134516
120.
Miller
,
R. J. D.
,
1991
, “
Vibrational Energy Relaxation and Structural Dynamics of Heme Proteins
,”
Ann. Rev. Phys. Chem.
,
42
(
1
), pp.
581
614
.10.1146/annurev.pc.42.100191.003053
121.
Karplus
,
M.
, and
McCammon
,
J. A.
,
1983
, “
Dynamics of Proteins: Elements and Function
,”
Ann. Rev. Biochem.
,
53
, pp.
263
300
.
122.
McCammon
,
J. A.
,
Gelin
,
B. R.
, and
Karplus
,
M.
,
1977
, “
Dynamics of Folded Proteins
,”
Nature
,
267
(
5612
), pp.
585
590
.10.1038/267585a0
123.
Schulz
,
R.
,
Krishnan
,
M.
,
Daidone
,
I.
, and
Smith
,
J. C.
,
2009
, “
Instantaneous Normal Modes and the Protein Glass Transition
,”
Biophys. J.
,
96
(
2
), pp.
476
484
.10.1016/j.bpj.2008.10.007
You do not currently have access to this content.