Abstract

Water phase-change is of importance to many applications including energy conversion, thermal management of electronics, and medical therapies. Augmenting the rate of phase-change by application of an electric field is of interest in many situations and may lead to increased effectiveness of energy transfer. Thus, it is important to develop a better understanding of the effect of an electric field on the thermodynamic properties of water. In this work, molecular dynamics (MD) was utilized to assess two distinct water models, the TIP4P-Ew and the SWM4-NDP, for predicting the effect of an electric field on the density and the enthalpy of vaporization of water. Both water models possess rigid molecular geometry. However, the SWM4-NDP model has a negatively charged Drude particle (the “NDP”) attached to the oxygen site in the water molecule, making the SWM4-NDP model polarizable. The objective is to understand if the polarizability of the water model has a significant effect when predicting the two properties of interest. Applying an electric field in MD simulations with each water model resulted in increased values for both the density and enthalpy of vaporization. The magnitude of these increases is comparable between water models and grows with applied field strength. Corresponding electrostriction pressure attributed to the applied field is well below values predicted by analytical models.

References

1.
Raoux
,
S.
,
2009
, “
Phase Change Materials
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
25
48
.10.1146/annurev-matsci-082908-145405
2.
Kumar
,
A.
, and
Shukla
,
S. K.
,
2015
, “
A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application
,”
Energy Procedia
,
74
, pp.
462
469
.10.1016/j.egypro.2015.07.728
3.
Zhou
,
Y.
,
Wu
,
S.
,
Ma
,
Y.
,
Zhang
,
H.
,
Zeng
,
X.
,
Wu
,
F.
,
Liu
,
F.
,
Ryu
,
J. E.
, and
Guo
,
Z.
,
2020
, “
Recent Advances in Organic/Composite Phase Change Materials for Energy Storage
,”
ES Energy Environ.
,
9
, pp.
28
40
.10.30919/esee8c150
4.
Zeng
,
H.
,
Du
,
X. W.
,
Singh
,
S. C.
,
Kulinich
,
S. A.
,
Yang
,
S.
,
He
,
S.
, and
Cai
,
W.
,
2012
, “
Nanomaterials Via Laser Ablation/Irradiation in Liquid: A Review
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1333
1353
.10.1002/adfm.201102295
5.
Riedel
,
R.
,
Mahr
,
N.
,
Yao
,
C.
,
Wu
,
A.
,
Yang
,
F.
, and
Hampp
,
N.
,
2020
, “
Synthesis of Gold–Silica Core–Shell Nanoparticles by Pulsed Laser Ablation in Liquid and Their Physico-Chemical Properties Towards Photothermal Cancer Therapy
,”
Nanoscale
,
12
(
5
), pp.
3007
3018
.10.1039/C9NR07129F
6.
Bologa
,
M. K.
,
Chernica
,
I. M.
,
Kojevnikov
,
I. V.
, and
Mardarskii
,
O. I.
,
2017
, “
The Effect of Electric Field on Heat Transfer at Boiling on Porous Surface
,”
J. Phys. Conf. Ser.
,
891
, p.
012007
.10.1088/1742-6596/891/1/012007
7.
Yoo
,
J. H.
,
2000
, “
Enhanced Mass Removal Due to Phase Explosion During High Irradiance Nanosecond Laser Ablation of Silicon
,” Ph.D. dissertation,
University of California Berkeley
,
Berkeley, CA
.
8.
Massarweh
,
N. N.
,
Cosgriff
,
N.
, and
Slakey
,
D. P.
,
2006
, “
Electrosurgery: History, Principles, and Current and Future Uses
,”
J. Am. Coll. Surg.
,
202
(
3
), pp.
520
530
.10.1016/j.jamcollsurg.2005.11.017
9.
Salem
,
M.
,
Salem
,
M.
,
Borca-Tasciuc
,
D.-A.
, and
Hella
,
M. M.
,
2007
, “
Electrostatic MEMS Converters With a Switchable Dielectric Constant for Micro-Scale Power Generation
,”
Proceedings of the 19th International Conference on Microelectronics
, Cairo, EG, December 29–31, 2007, INSPEC Accession No. 9965455, pp.
205
208
.
10.
Kristiansen
,
M.
,
Hatfield
,
L. L.
, and
Lojewski
,
D.
,
1998
, “
High Voltage Water Breakdown Studies
,” U.S. Department of Defense, Alexandria, VA, Defense Special Weapons Agency Report No. DSWA-TR-97-30.
11.
Torchigin
,
V. P.
,
2019
, “
Optical Electrostriction Pressure in Liquid, Solids and Gases
,”
Optik
,
189
, pp.
90
96
.10.1016/j.ijleo.2019.05.064
12.
Ushakov
,
V. Y.
,
2007
, “
Behavior of Liquids in Strong Electric Fields
,”
Impulse Breakdown of Liquids
,
Springer
,
Berlin, Heidelberg
, pp.
1
51
.
13.
Milne
,
A. W.
, and
Jorge
,
M.
,
2019
, “
Polarization Corrections and the Hydration Free Energy of Water
,”
J. Chem. Theory Comput.
,
15
(
2
), pp.
1065
1078
.10.1021/acs.jctc.8b01115
14.
Kadaoluwa Pathirannahalage
,
S. P.
,
Meftahi
,
N.
,
Elbourne
,
A.
,
Weiss
,
A. C. G.
,
McConville
,
C. F.
,
Padua
,
A.
,
Winkler
,
D. A.
,
Costa Gomes
,
M.
,
Greaves
,
T. L.
,
Le
,
T. C.
,
Besford
,
Q. A.
, and
Christofferson
,
A. J.
,
2021
, “
Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations
,”
J. Chem. Inf. Model.
,
61
(
9
), pp.
4521
4536
.10.1021/acs.jcim.1c00794
15.
Bratko
,
D.
,
Daub
,
C. D.
,
Leung
,
K.
, and
Luzar
,
A.
,
2007
, “
Effect of Field Direction on Electrowetting in a Nanopore
,”
J. Am. Chem. Soc.
,
129
(
9
), pp.
2504
2510
.10.1021/ja0659370
16.
Vaitheeswaran
,
S.
,
Yin
,
H.
, and
Rasaiah
,
J. C.
,
2005
, “
Water Between Plates in the Presence of an Electric Field in an Open System
,”
J. Phys. Chem. B
,
109
(
14
), pp.
6629
6635
.10.1021/jp045591k
17.
England
,
J. L.
,
Park
,
S.
, and
Pande
,
V. S.
,
2008
, “
Theory for an Order-Driven Disruption of the Liquid State in Water
,”
J. Chem. Phys.
,
128
(
4
), p.
044503
.10.1063/1.2823129
18.
Chakraborty
,
S.
,
Kumar
,
H.
,
Dasgupta
,
C.
, and
Maiti
,
P. K.
,
2017
, “
Confined Water: Structure, Dynamics, and Thermodynamics
,”
Acc. Chem. Res.
,
50
(
9
), pp.
2139
2146
.10.1021/acs.accounts.6b00617
19.
Kamath
,
G.
,
Deshmukh
,
S. A.
, and
Sankaranarayanan
,
S. K. R. S.
,
2013
, “
Comparison of Select Polarizable and Non-Polarizable Water Models in Predicting Solvation Dynamics of Water Confined Between MgO Slabs
,”
J. Phys. Condens. Mat.
,
25
(
30
), p.
305003
.10.1088/0953-8984/25/30/305003
20.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
(
24
), pp.
6269
6271
.10.1021/j100308a038
21.
Porterfield
,
M.
, and
Borca-Tasciuc
,
D.-A.
,
2020
, “
Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
112501
.10.1115/1.4047642
22.
Horn
,
H. W.
,
Swope
,
W. C.
,
Pitera
,
J. W.
,
Madura
,
J. D.
,
Dick
,
T. J.
,
Hura
,
G. L.
, and
Head-Gordon
,
T.
,
2004
, “
Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew
,”
J. Chem. Phys.
,
120
(
20
), pp.
9665
9678
.10.1063/1.1683075
23.
Lamoureux
,
G.
,
Harder
,
E.
,
Vorobyov
,
I. V.
,
Roux
,
B.
, and
MacKerell
,
A. D.
,
2006
, “
A Polarizable Model of Water for Molecular Dynamics Simulations of Biomolecules
,”
Chem. Phys. Lett.
,
418
(
1–3
), pp.
245
249
.10.1016/j.cplett.2005.10.135
24.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
25.
Brown
,
W. M.
,
Wang
,
P.
,
Plimpton
,
S. J.
, and
Tharrington
,
A. N.
,
2011
, “
Implementing Molecular Dynamics on Hybrid High Performance Computers –Short Range Forces
,”
Comput. Phys. Commun.
,
182
(
4
), pp.
898
911
.10.1016/j.cpc.2010.12.021
26.
Brown
,
W. M.
,
Kohlmeyer
,
A.
,
Plimpton
,
S. J.
, and
Tharrington
,
A. N.
,
2012
, “
Implementing Molecular Dynamics on Hybrid High Performance Computers – Particle–Particle Particle-Mesh
,”
Comput. Phys. Commun.
,
183
(
3
), pp.
449
459
.10.1016/j.cpc.2011.10.012
27.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–the Open Visualization Tool
,”
Model. Simul. Mat. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
28.
Martínez
,
L.
,
Andrade
,
R.
,
Birgin
,
E. G.
, and
Martínez
,
J. M.
,
2009
, “
PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations
,”
J. Comput. Chem.
,
30
(
13
), pp.
2157
2164
.10.1002/jcc.21224
29.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields. —II. From the Equation of State of a Gas
,”
Proc. R. Soc. London. Ser. A, Containing Papers a Math. Phys. Char.
,
106
(
738
), pp.
463
477
.10.1098/rspa.1924.0082
30.
Lamoureux
,
G.
,
MacKerell
,
A. D.
, and
Roux
,
B.
,
2003
, “
A Simple Polarizable Model of Water Based on Classical Drude Oscillators
,”
J. Chem. Phys.
,
119
(
10
), pp.
5185
5197
.10.1063/1.1598191
31.
8.4.4. TIP4P water model
,” accessed June 20, 2022, https://docs.lammps.org/Howto_tip4p.html
32.
Lemons
,
D. S.
, and
Gythiel
,
A.
,
1997
, “
Paul Langevin's 1908 Paper ‘on the Theory of Brownian Motion' [‘Sur la Théorie du Mouvement Brownien,' C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]
,”
Am. J. Phys.
,
65
(
11
), pp.
1079
1081
.10.1119/1.18725
33.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.10.1063/1.447334
34.
Dequidt
,
A.
,
Devémy
,
J.
, and
Pádua
,
A. A. H.
,
2016
, “
Thermalized Drude Oscillators With the LAMMPS Molecular Dynamics Simulator
,”
J. Chem. Inf. Model.
,
56
(
1
), pp.
260
268
.10.1021/acs.jcim.5b00612
35.
Hoover
,
W. G.
,
1986
, “
Constant-Pressure Equations of Motion
,”
Phys. Rev. A
,
34
(
3
), pp.
2499
2500
.10.1103/PhysRevA.34.2499
36.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
,
1982
, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
(
1
), pp.
637
649
.10.1063/1.442716
37.
Beckers
,
J. V. L.
,
Lowe
,
C. P.
, and
de Leeuw
,
S. W.
,
1998
, “
An Iterative PPPM Method for Simulating Coulombic Systems on Distributed Memory Parallel Computers
,”
Mol. Simul.
,
20
(
6
), pp.
369
383
.10.1080/08927029808022044
38.
Andersen
,
H. C.
,
1983
, “
Rattle: A ‘Velocity' Version of the Shake Algorithm for Molecular Dynamics Calculations
,”
J. Comput. Phys.
,
52
(
1
), pp.
24
34
.10.1016/0021-9991(83)90014-1
39.
Stukan
,
M. R.
,
Asmadi
,
A.
, and
Abdallah
,
W.
,
2013
, “
Bulk Properties of SWM4-NDP Water Model at Elevated Temperature and Pressure
,”
J. Mol. Liq.
,
180
, pp.
65
69
.10.1016/j.molliq.2012.12.023
40.
Marracino
,
P.
,
Liberti
,
M.
,
d'Inzeo
,
G.
, and
Apollonio
,
F.
,
2015
, “
Water Response to Intense Electric Fields: A Molecular Dynamics Study
,”
Bioelectromagnetics
,
36
(
5
), pp.
377
385
.10.1002/bem.21916
41.
Aragones
,
J. L.
,
MacDowell
,
L. G.
,
Siepmann
,
J. I.
, and
Vega
,
C.
,
2011
, “
Phase Diagram of Water Under an Applied Electric Field
,”
Phys. Rev. Lett.
,
107
(
15
), p.
155702
.10.1103/PhysRevLett.107.155702
42.
Kiss
,
P. T.
,
Bertsyk
,
P.
, and
Baranyai
,
A.
,
2012
, “
Testing Recent Charge-on-Spring Type Polarizable Water Models. I. Melting Temperature and Ice Properties
,”
J. Chem. Phys.
,
137
(
19
), p.
194102
.10.1063/1.4767063
43.
Gladich
,
I.
, and
Roeselová
,
M.
,
2012
, “
Comparison of Selected Polarizable and Nonpolarizable Water Models in Molecular Dynamics Simulations of Ice Ih
,”
Phys. Chem. Chem. Phys.
,
14
(
32
), p.
11371
.10.1039/c2cp41497j
44.
Maerzke
,
K. A.
, and
Siepmann
,
J. I.
,
2010
, “
Effects of an Applied Electric Field on the Vapor−Liquid Equilibria of Water, Methanol, and Dimethyl Ether
,”
J. Phys. Chem. B
,
114
(
12
), pp.
4261
4270
.10.1021/jp9101477
45.
Jacobs
,
I. S.
, and
Lawson
,
A. W.
,
1952
, “
An Analysis of the Pressure Dependence of the Dielectric Constant of Polar Liquids
,”
J. Chem. Phys.
,
20
(
7
), pp.
1161
1164
.10.1063/1.1700684
You do not currently have access to this content.