Abstract

Fluid flow and heat transfer of a gas stream in various ducts have been studied thoroughly before. However, in real applications, a gas stream usually contains dust particles, whose effects have typically been neglected. In this study, the effects of the dust particles on the flow and heat transfer characteristics in a parallel-plates duct were numerically investigated in detail. A lattice Boltzmann method combined with a modified immersed boundary approach was employed to calculate the velocity and temperature distribution in the duct. The effects of the particles on the development of the hydrodynamic and thermal boundary layers in the duct were predicted. The product of friction factor and Reynolds number (fRe) and local Nusselt number (NuL) along the flow direction were obtained for a particle-laden flow and compared with those for a pure gas flow. The results indicated that for particle-laden flows, the “fully-developed” flow was just an approximation. Both the flow and thermal boundary layers were disrupted by the accompanying particles. The particles would form a stable and dense particulate fouling layer at the walls; this could increase the local (fRe) and reduce the NuL in “fully developed” regions. Moreover, ducts with superhydrophobic properties would be less influenced by the particles due to decreased particle deposition because of the anti-dust property of the surface.

References

1.
Prajapati
,
A. N.
, and
Tariq
,
A.
,
2021
, “
Experimental Investigation on Heat Transfer and Friction Factor in Open Matrix Subchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
5
), p.
052101
.10.1115/1.4049896
2.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D. M.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
2
), pp.
141
153
.10.1115/1.2402179
3.
Bulck
,
E. V.
,
2004
, “
The Nonlinear Increase of Nusselt Number With Friction Factor in Fully Developed Laminar Duct Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
5
), pp.
840
842
.10.1115/1.1800511
4.
Sherony
,
D. F.
, and
Solbrig
,
C. W.
,
1970
, “
Analytical Investigation of Heat or Mass Transfer and Friction Factors in a Corrugated Duct Heat or Mass Exchanger
,”
Int. J. Heat Mass Transfer
,
13
(
1
), pp.
145
159
.10.1016/0017-9310(70)90031-1
5.
John
,
H.
, and
Lienhard
,
V.
,
2020
, “
Heat Transfer in Flat-Plate Boundary Layers: A Correlation for Laminar, Transitional, and Turbulent Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
2
), p.
061805
.10.1115/1.4046795
6.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Isothermal Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
7.
Hassan
,
K.
,
Kunz
,
R.
,
Hanson
,
D.
, and
Manahan
,
M.
,
2021
, “
A Numerical Investigation Into the Heat Transfer Performance and Particle Dynamics of a Compressive, Highly Mass Loaded, High Reynolds Number, Particle Laden Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
12
), p.
121801
.10.1115/1.4052437
8.
Tang
,
S. Z.
,
Wang
,
F. L.
,
Ren
,
Q. L.
, and
He
,
Y. L.
,
2017
, “
Fouling Characteristics Analysis and Morphology Prediction of Heat Exchangers With a Particulate Fouling Model Considering Deposition and Removal Mechanisms
,”
Fuel
,
203
(
1
), pp.
725
738
.10.1016/j.fuel.2017.03.049
9.
Liu
,
C. X.
,
Tang
,
S.
,
Dong
,
Y. H.
, and
Shen
,
L.
,
2018
, “
Heat Transfer Modulation by Inertial Particles in Particle-Laden Turbulent Channel Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
112003
.10.1115/1.4040347
10.
Ahn
,
Y.-C.
, and
Lee
,
J.-K.
,
2005
, “
Characteristics of Air-Side Particulate Fouling Materials in Finned-Tube Exchangers of Air Conditioners
,”
Part. Sci. Technol.
,
23
(
3
), pp.
297
307
.10.1080/02726350590955930
11.
Bell
,
I. H.
, and
Groll
,
E. A.
,
2011
, “
Air-Side Particulate Fouling of Microchannel Heat Exchangers: Experimental Comparison of Air-Side Pressure Drop and Heat Transfer With Plate-Fin Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
742
749
.10.1016/j.applthermaleng.2010.10.019
12.
Baranyshyn
,
Y. A.
,
Fisenko
,
S. P.
, and
Penyazkov
,
O. G.
,
2010
, “
Heat Transfer and Growth of Nano and Submicron Particles of Black Carbon in Nonequilibrium Gas Mixture. Experiment and Simulation
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5465
5471
.10.1016/j.ijheatmasstransfer.2010.07.011
13.
Matthew
,
J. F.
,
David
,
P. S.
, and
Woodrow
,
A. F.
,
2005
, “
An Experimental Investigation of the Influence of Gas and Solid Particle Interaction on the Heat Transfer Effectiveness of a Falling-Bed Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
10
), pp.
1077
1086
.10.1115/1.2033904
14.
Li
,
L.
,
Liu
,
C. L.
,
Li
,
B. R.
,
Zhu
,
H. R.
,
Wu
,
Z.
, and
Chen
,
W. B.
,
2021
, “
Numerical Study on Particles Deposition in the U-Bend Ribbed Passage
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
2
), p.
023002
.10.1115/1.4048827
15.
Zhang
,
N.
,
Wei
,
X.
,
Yang
,
Q. R.
,
Li
,
N.
, and
Yao
,
E.
,
2019
, “
Numerical Simulation and Experimental Study of the Growth Characteristics of Particulate Fouling on Pipe Heat Transfer Surface
,”
Heat Mass Transfer
,
55
(
3
), pp.
687
698
.10.1007/s00231-018-2451-y
16.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Shiomi
,
H.
,
1984
, “
LDV Measurements of an Air-Solid Two-Phase Flow in a Vertical Pipe
,”
J. Fluid Mech.
,
139
, pp.
417
434
.10.1017/S0022112084000422
17.
Watkins
,
M. F.
, and
Gould
,
R. D.
,
2019
, “
Experimental Characterization of Heat Transfer to Vertical Dense Granular Flows Across Wide Temperature Range
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
3
), p.
032001
.10.1115/1.4042333
18.
Wang
,
F. L.
,
He
,
Y. L.
,
Tang
,
S. Z.
, and
Tong
,
Z. X.
,
2017
, “
Parameter Study on the Fouling Characteristics of the H-Type Finned Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
112
, pp.
367
378
.10.1016/j.ijheatmasstransfer.2017.04.107
19.
Wang
,
F. L.
,
He
,
Y. L.
,
Tong
,
Z. X.
, and
Tang
,
S. Z.
,
2017
, “
Real-Time Fouling Characteristics of a Typical Heat Exchanger Used in the Waste Heat Recovery Systems
,”
Int. J. Heat Mass Transfer
,
104
, pp.
774
786
.10.1016/j.ijheatmasstransfer.2016.08.112
20.
Khiabani
,
R. H.
,
Joshi
,
Y.
, and
Aidun
,
C. K.
,
2010
, “
Heat Transfer in Microchannels With Suspended Solid Particles: Lattice Boltzmann Based on Computations
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
4
), p.
141003
.10.1115/1.4000860
21.
Hu
,
Y.
,
Li
,
D. C.
,
Niu
,
X. D.
, and
Shu
,
S.
,
2018
, “
Fully Resolved Simulation of Particulate Flows With Heat Transfer by Smoothed Profile-Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1164
1167
.10.1016/j.ijheatmasstransfer.2018.05.137
22.
Wang
,
Y. Y.
,
Sierakowski
,
A. J.
, and
Prosperetti
,
A.
,
2017
, “
Fully-Resolved Simulation of Particulate Flows With Particles-Fluid Heat Transfer
,”
J. Comput. Phys.
,
350
, pp.
638
656
.10.1016/j.jcp.2017.07.044
23.
Niazi Ardekani
,
M.
,
Abouali
,
O.
,
Picano
,
F.
, and
Brandt
,
L.
,
2018
, “
Heat Transfer in Laminar Couette Flow Laden With Rigid Spherical Particles
,”
J. Fluid Mech.
,
834
, pp.
308
334
.10.1017/jfm.2017.709
24.
Chang
,
Q.
, and
Ge
,
W.
,
2020
, “
Direct Numerical Simulation of Wall-to-Liquid Heat Transfer in Turbulent Particle-Laden Channel Flow
,”
Chem. Eng. Process.: Process Intensif.
,
157
, p.
108023
.10.1016/j.cep.2020.108023
25.
Quan
,
Y. Y.
, and
Zhang
,
L. Z.
,
2017
, “
Experimental Investigation of the Anti-Dust Effect of Transparent Hydrophobic Coatings Applied for Solar Cell Covering Glass
,”
Sol. Energy Mater. Sol. Cells
,
160
, pp.
382
389
.10.1016/j.solmat.2016.10.043
26.
Pan
,
A. J.
,
Lu
,
H.
, and
Zhang
,
L. Z.
,
2019
, “
Experimental Investigation of Dust Deposition Reduction on Solar Cell Covering Glass by Different Self-Cleaning Coatings
,”
Energy
,
181
, pp.
645
653
.10.1016/j.energy.2019.05.223
27.
Mohammadian
,
S. K.
, and
Zhang
,
Y. W.
,
2020
, “
Thermal Management of Li-Ion Batteries by Embedding Microgrooves Inside the Electrodes: A Thermal Lattice Boltzmann Method Study
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
5
), p.
052902
.10.1115/1.4046536
28.
Zhang
,
H.
,
Yu
,
A.
,
Zhong
,
W.
, and
Tan
,
Y.
,
2015
, “
A Combined TLBM-IBM-DEM Scheme for Simulating Isothermal Particulate Flow in Fluid
,”
Int. J. Heat Mass Transfer
,
91
, pp.
178
189
.10.1016/j.ijheatmasstransfer.2015.07.119
29.
Raoudha
,
C.
,
Abdelmajid
,
J.
, and
Patrick
,
P.
,
2021
, “
Lattice Boltzmann Simulation for Flow Inside Open-Ended Porous Medium With Partially Thermally Active Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
11
), p.
114502
.10.1115/1.4051837
30.
Kruggel-Emden
,
H.
,
Kravets
,
B.
,
Suryanarayana
,
M. K.
, and
Jasevicius
,
R.
,
2016
, “
Direct Numerical Simulation of Coupled Fluid Flow and Heat Transfer for Single Particles and Particle Packing by a LBM-Approach
,”
Powder Technol.
,
294
, pp.
236
251
.10.1016/j.powtec.2016.02.038
31.
Noble
,
D. R.
, and
Torczynski
,
J. R.
,
1998
, “
A lattice-Boltzmann Method for Partially Saturated Computational Cells
,”
Int. J. Mod. Phys. C
,
09
(
08
), pp.
1189
1201
.10.1142/S0129183198001084
32.
Cai
,
R. R.
, and
Zhang
,
L. Z.
,
2016
, “
Modeling of Dynamic Deposition and Filtration Processes of Airborne Particles by a Single Fiber With a Coupled Lattice Boltzmann and Discrete Element Method
,”
Build. Environ.
,
106
, pp.
274
285
.10.1016/j.buildenv.2016.07.001
33.
Cheng
,
C.
,
Galindo-Torres
,
S. A.
,
Zhang
,
X.
,
Zhang
,
P.
,
Scheuermann
,
A.
, and
Li
,
L.
,
2018
, “
An Improved Immersed Moving Boundary for the Coupled Discrete Element Lattice Boltzmann Method
,”
Comput. Fluids
,
177
, pp.
12
19
.10.1016/j.compfluid.2018.09.018
34.
Wang
,
L. M.
,
Zhang
,
B.
,
Wang
,
X.
,
Ge
,
W.
, and
Li
,
J.
,
2013
, “
Lattice Boltzmann Based Discrete Simulation for Gas-Solid Fluidization
,”
Chem. Eng. Sci.
,
101
, pp.
228
239
.10.1016/j.ces.2013.06.019
35.
Li
,
S. Q.
,
Marshall
,
J. S.
,
Liu
,
G. Q.
, and
Yao
,
Q.
,
2011
, “
Adhesive Particulate Flow: The Discrete Element Method and Its Application in Energy and Environmental Engineering
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
633
668
.10.1016/j.pecs.2011.02.001
36.
Marshall
,
J. S.
,
2009
, “
Discrete-Element Modeling of Particulate Aerosol Flows
,”
J. Comput. Phys.
,
228
(
5
), pp.
1541
1561
.10.1016/j.jcp.2008.10.035
37.
Thornton
,
C.
, and
Yin
,
K. K.
,
1991
, “
Impact of Elastic Spheres With and Without Adhesion
,”
Powder Technol.
,
65
(
1–3
), pp.
153
166
.10.1016/0032-5910(91)80178-L
38.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behavior of Adhesive, Elastic-Plastic Spheres
,”
Powder Technol.
,
99
(
2
), pp.
154
162
.10.1016/S0032-5910(98)00099-0
39.
Pan
,
A. J.
,
Cai
,
R. R.
, and
Zhang
,
L. Z.
,
2021
, “
Numerical Methodology for Simulating Particle Deposition on Superhydrophobic Surfaces With Randomly Distributed Rough Structures
,”
Appl. Surf. Sci.
,
568
, p.
150872
.10.1016/j.apsusc.2021.150872
40.
Michaelides
,
E. E.
,
2015
, “
Brownian Movement and Thermophoresis of Nanoparticles in Liquids
,”
Int. J. Heat Mass Transfer
,
81
, pp.
179
187
.10.1016/j.ijheatmasstransfer.2014.10.019
41.
Zhang
,
L. Z.
,
2014
, “
A Lattice Boltzmann Simulation of Mass Transport Through Composite Membranes
,”
AlChE J.
,
60
(
11
), pp.
3925
3938
.10.1002/aic.14564
42.
Zhang
,
L. Z.
,
2007
, “
Heat and Mass Transfer in a Cross-Flow Membrane-Based Enthalpy Exchanger Under Naturally Formed Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
151
162
.10.1016/j.ijheatmasstransfer.2006.06.025
43.
Chen
,
H.
,
Wang
,
Y. G.
,
Zhao
,
Q. X.
,
Chen
,
Z. Y.
, and
Zhang
,
J. F.
,
2015
, “
Experimental of Ash Deposition on Low Temperature Heating Surfaces in a Coal-Fired Boiler
,”
Proceed. CSEE
,
35
(
S1
), pp.
118
124
.10.13334/j.0258-8013.pcsee.2015.S.016
44.
Zheng
,
Z. M.
,
Zhang
,
Y. S.
,
Wang
,
Y.
,
Li
,
P. P.
, and
Gu
,
M. Y.
,
2021
, “
Numerical Simulation Study on Ash Deposition Characteristics of a Single Elliptical Heat Exchanger Tube
,”
Adv. NR Energy
,
9
(
4
), pp.
265
273
.10.3969/j.issn.2095-560X.2021.04.001
45.
Jiang
,
Q.
, and
Lu
,
H. M.
,
2008
, “
Size Dependent Interface Energy and Its Applications
,”
Surf. Sci. Rep.
,
63
(
10
), pp.
427
464
.10.1016/j.surfrep.2008.07.001
46.
Zaccone
,
A.
,
Wu
,
H.
,
Gentili
,
D.
, and
Morbidelli
,
M.
,
2009
, “
Theory of Activated-Rate Processes Under Shear With Application to Shear-Induced Aggregation of Colloids
,”
Phys. Rev. E
,
80
(
5
), p.
051404
.10.1103/PhysRevE.80.051404
47.
Tong
,
Z. X.
,
Li
,
M. J.
,
He
,
Y. L.
, and
Tan
,
H. Z.
,
2017
, “
Simulation of Real Time Particle Deposition and Removal Processes on Tubes by Coupled Numerical Method
,”
Appl. Energy
,
185
, pp.
2183
2193
.10.1016/j.apenergy.2016.01.043
48.
Xu
,
Z. M.
,
Han
,
Z. M.
,
Sun
,
A. D.
, and
Yu
,
X. Y.
,
2019
, “
Numerical Study of Particulate Fouling Characteristics in a Rectangular Heat Exchange Channel
,”
Appl. Therm. Eng.
,
154
, pp.
657
667
.10.1016/j.applthermaleng.2019.03.142
49.
Muhammad
,
A.
,
Arafat
,
A.
, and
Bhuiyan
,
A.
,
2019
, “
Recent Advancements in Impedance of Fouling Resistance and Particulate Depositions in Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
141
, pp.
580
603
.10.1016/j.ijheatmasstransfer.2019.07.011
50.
Li
,
G. P.
, and
Zhang
,
L. Z.
,
2017
, “
Laminar Flow and Conjugate Heat and Mass Transfer in a Hollow Fiber Membrane Hundle Used for Seawater Desalination
,”
Int. J. Heat Mass Transfer
,
111
, pp.
123
137
.10.1016/j.ijheatmasstransfer.2017.03.107
51.
Zhi
,
J. H.
, and
Zhang
,
L. Z.
,
2018
, “
Durable Superhydrophobic Surface With Highly Antireflective and Self-Cleaning Properties for the Glass Covers of Solar Cells
,”
Appl. Surf. Sci.
,
454
, pp.
239
248
.10.1016/j.apsusc.2018.05.139
You do not currently have access to this content.