Abstract

Porous capillary wick structures are being employed in two-phase thermal management devices owing to their pumping capabilities and thermal performance enhancement during evaporation of the working fluid. Thin-film evaporation in a porous wick depends primarily on the shape of the liquid–vapor meniscus, especially near the wall. The primary objective of this paper is to study and investigate the thin-film evaporation of the liquid in a unit cell representation (UCR) of a single layer of a metallic wire mesh screen. The volume-of-fluid (VOF) method, which is an interface-capturing technique in multiphase flow modeling, is employed to obtain the steady-state meniscus shape under equilibrium conditions. This paper demonstrates the impact of the equilibrium contact angle (θ) and the initial meniscus height (H) on the steady-state interfacial pressure difference. It outlines a detailed process for estimating 3D interfacial surfaces, obtained from the VOF solution, to generate the final geometry for the thin-film evaporation analysis. A static meniscus heat-transfer model is subsequently solved using the commercial finite volume code, ansysfluent, to obtain the temperature and flow characteristics during evaporation. The relationship of parameters such as the average evaporation mass fluxes and heat transfer coefficients are estimated and presented in this paper. Finally, the relationship between the pressure drop across the liquid–vapor meniscus and the thin-film evaporation rate for screen mesh wicks is discussed.

References

1.
Reed
,
J. G.
, and
Tien
,
C. L.
,
1987
, “
Modeling of the Two-Phase Closed Thermosyphon
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
722
730
.10.1115/1.3248150
2.
Reay
,
D.
,
McGlen
,
R.
, and
Kew
,
P.
,
2013
,
Heat Pipes: Theory, Design and Applications
,
Butterworth-Heinemann
, Oxford, UK.10.1016/C2011-0-08979-2
3.
Li
,
C.
,
Peterson
,
G. P.
, and
Wang
,
Y.
,
2006
, “
Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1312
1319
.10.1115/1.2349507
4.
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2012
, “
Visualization of Vapor Formation Regimes During Capillary-Fed Boiling in Sintered-Powder Heat Pipe Wicks
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3498
3510
.10.1016/j.ijheatmasstransfer.2012.03.021
5.
Schonberg
,
J. A.
,
DasGupta
,
S.
, and
Wayner
,
P. C.
,
1995
, “
An Augmented Young-Laplace Model of an Evaporating Meniscus in a Microchannel With High Heat Flux
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
163
170
.10.1016/0894-1777(94)00085-M
6.
Sharma
,
A.
,
1998
, “
Equilibrium and Dynamics of Evaporating or Condensing Thin Fluid Domains: Thin Film Stability and Heterogeneous Nucleation
,”
Langmuir
,
14
(
17
), pp.
4915
4928
.10.1021/la971389f
7.
Ha
,
J. M.
, and
Peterson
,
G. P.
,
1996
, “
The Interline Heat Transfer of Evaporating Thin Films Along a Micro Grooved Surface
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
747
755
.10.1115/1.2822695
8.
Latin
,
R. M. W.
,
Bowersox
,
R. D.
,
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.10.2514/3.862
9.
Park
,
K.
, and
Lee
,
K. S.
,
2003
, “
Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4587
4594
.10.1016/S0017-9310(03)00306-5
10.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
11.
Lu
,
Z.
,
Preston
,
D. J.
,
Antao
,
D. S.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2017
, “
Coexistence of Pinning and Moving on a Contact Line
,”
Langmuir
,
33
(
36
), pp.
8970
8975
.10.1021/acs.langmuir.7b02070
12.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2013
, “
Evaporation Analysis in Sintered Wick Microstructures
,”
Int. J. Heat Mass Transfer
,
61
(
1
), pp.
729
741
.10.1016/j.ijheatmasstransfer.2013.02.038
13.
Li
,
C.
, and
Peterson
,
G. P.
,
2006
, “
The Effective Thermal Conductivity of Wire Screen
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4095
4105
.10.1016/j.ijheatmasstransfer.2006.03.031
14.
El-Genk
,
M. S.
, and
Lianmin
,
H.
,
1993
, “
An Experimental Investigation of the Transient Response of a Water Heat Pipe
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3823
3830
.10.1016/0017-9310(93)90062-B
15.
Lefèvre
,
F.
,
Conrardy
,
J.-B.
,
Raynaud
,
M.
, and
Bonjour
,
J.
,
2012
, “
Experimental Investigations of Flat Plate Heat Pipes With Screen Meshes or Grooves Covered With Screen Meshes as Capillary Structure
,”
Appl. Therm. Eng.
,
37
, pp.
95
102
.10.1016/j.applthermaleng.2011.11.022
16.
Li
,
C.
, and
Peterson
,
G. P.
,
2006
, “
Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1320
1328
.10.1115/1.2349508
17.
Engelhardt
,
A.
,
2010
, “
Investigation of Several Critical Issues in Screen Mesh Heat Pipe Manufacturing and Operation,”
Doctoral dissertation
, University of Nottingham, Nottingham, UK.http://eprints.nottingham.ac.uk/id/eprint/11156
18.
Remella
,
K. S.
, and
Gerner
,
F. M.
,
2017
, “
Simplified Mathematical Model of a Novel ‘Closed Loop Two-Phase Wicked Thermosyphon (CLTPWT)’
,”
Int. J. Therm. Sci.
,
114
, pp.
281
295
.10.1016/j.ijthermalsci.2017.01.002
19.
Remella
,
K. S.
,
Gerner
,
F.
, and
Shuja
,
A.
,
2017
, “
Mathematical Modeling of Novel ‘Two-Phase Heat Transfer Device (TPHTD)’ for Thermal Management of Light Emitting Diodes (LEDs)
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
6
), p.
062901
.10.1115/1.4035649
20.
Silver
,
R. S.
, and
Simpson
,
H. C.
,
1961
, “
The Condensation of Superheated Steam
,”
Proceedings of a Conference Held at the National Engineering Laboratory
, Glasgow, UK.
21.
ANSYS Inc.
,
2013
, Design Modeler User's Guide,
ANSYS Inc
., accessed Aug. 9, 2022, https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v222/en/wb_dm/agpbook.html
22.
Green
,
S. I.
,
Wang
,
Z.
,
Waung
,
T.
, and
Vakil
,
A.
,
2008
, “
Simulation of the Flow Through Woven Fabrics
,”
Comput. Fluids
,
37
(
9
), pp.
1148
1156
.10.1016/j.compfluid.2007.10.013
23.
OpenFoam,, 2017 “OpenFoam User Guide,” accessed Aug. 9, 2022, https://openfoamwiki.net/index.php/SnappyHexMesh
24.
ANSYS Inc.
,
2011
, “Ansys Fluent User's Guide,” Ansys Inc. Canonsburg, PA.
25.
MathWorks
,
2005
, “Using {MATLAB},” accessed Aug. 9, 2022, https://www.mathworks.com/help/matlab/
26.
27.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
28.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
,
Gedupudi
,
S.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
,
2011
, “
Confined Bubble Growth During Flow Boiling in a Mini-/Micro-Channel of Rectangular Cross-Section Part II: Approximate 3-D Numerical Simulation
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
267
273
.10.1016/j.ijthermalsci.2010.09.004
29.
Geisler
,
K. J. L.
, and
Bar-Cohen
,
A.
,
2008
, “
Numerical and Experimental Investigations of Boiling Enhancement in Buoyancy-Driven Microchannels
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(I-THERM), Orlando, FL, May 28–31, pp.
65
74
.10.1109/ITHERM.2008.4544255
30.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013002
.https://nanoheat.stanford.edu/publication/volume-of-fluid-simulation-of-boiling-flow-in-a-vaporventing-microchannel/
31.
ANSYS Inc.
,
2013
, “Ansys Fluent Theory Guide”, accessed Aug. 9, 2022, https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v222/en/flu_th/flu_th.html
32.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
33.
ANSYS Inc.
,
2013
, “Ansys Fluent UDF Manual,” accessed Aug. 9, 2022, https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v222/en/flu_udf/flu_udf.html
34.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling. Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.10.1016/j.ijheatmasstransfer.2004.07.027
35.
Tanasawa
,
I.
,
1991
, “
Advances in Condensation Heat Transfer
,”
Advances in Heat Transfer
, Vol. 21,
Elsevier
, Amsterdam, The Netherlands, pp.
55
139
.
36.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University Press
, New York.
37.
Juric
,
D.
, and
Tryggvason
,
G.
,
1998
, “
Computations of Boiling Flows
,”
Int. J. Multiphase flow
,
24
(
3
), pp.
387
410
.10.1016/S0301-9322(97)00050-5
38.
Akkus
,
Y.
,
Gurer
,
A. T.
, and
Bellur
,
K.
,
2021
, “
Drifting Mass Accommodation Coefficients: In Situ Measurements From a Steady State Molecular Dynamics Setup
,”
Nanoscale Microscale Thermophys. Eng.
,
25
(
1
), pp.
25
45
.10.1080/15567265.2020.1861139
39.
Lu
,
Z.
,
Narayanan
,
S.
, and
Wang
,
E. N.
,
2015
, “
Modeling of Evaporation From Nanopores With Nonequilibrium and Nonlocal Effects
,”
Langmuir
,
31
(
36
), pp.
9817
9824
.10.1021/acs.langmuir.5b01700
40.
Marek
,
R.
, and
Straub
,
J.
,
2001
, “
Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
39
53
.10.1016/S0017-9310(00)00086-7
41.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
CRC Press
, Boca Raton, FL.10.1201/9780429082221
42.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.10.1016/j.jcp.2008.02.020
43.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2011
, “
A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
169
179
.10.1016/j.ijheatmasstransfer.2010.09.037
44.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of Hydrodynamics and Heat Transfer of Elongated Bubbles During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
59
(
1
), pp.
451
471
.10.1016/j.ijheatmasstransfer.2012.12.010
45.
Wörner
,
M.
,
2012
, “
Numerical Modeling of Multiphase Flows in Microfluidics and Micro Process Engineering: A Review of Methods and Applications
,”
Microfluid. Nanofluid.
,
12
(
6
), pp.
841
886
.10.1007/s10404-012-0940-8
46.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Spurious Current Suppression in VOF-CSF Simulation of Slug Flow Through Small Channels
,”
Numer. Heat Transfer. Part A
,
67
(
1
), pp.
1
12
.10.1080/10407782.2014.916109
47.
Balachandran
,
S.
,
Shuaib
,
N. H.
,
Hasini
,
H.
, and
Yusoff
,
M. Z.
,
2009
, “
Verification of Volume-of-Fluid (VOF) Simulation for Thin Liquid Film Applications
,”
Proceeding of ICEE 2009 3rd International Conference on Energy Environment: Advancement Towards Global Sustainability
, Malacca, Malaysia, Dec. 7–8, pp.
449
455
.10.1109/ICEENVIRON.2009.5398607
48.
Adkins
,
D. R.
, and
Dykhuizen
,
R. C.
,
1993
, “
Procedures for Measuring the Properties of Heat-Pipe Wick Materials
,”
Proceedings of 28th Intersociety Energy Conversation Engineering Conference
, pp.
911
917
.https://www.osti.gov/biblio/10177198
You do not currently have access to this content.