Abstract

This paper provides a detailed experimental investigation of heat transfer and pressure loss for leading edge jet impingement using square-edged, racetrack jets. Experiments were carried out over various parameters: jet-to-jet spacings (s/d) of 2, 4, 8; jet-to-target surface spacings (z/d) of 2 and 4; jet plate thicknesses (l/d) of 1.33, 2.6, and 4; and Reynolds numbers from 10,000 to 100,000. The results show that pressure loss and heat transfer decrease with increasing s/d and z/d. There is an interesting observation for jet plate thickness at l/d = 2.6—a local minima for both heat transfer and pressure loss is measured with the racetrack shaped jets. Using the exhaustive experimental data, design correlations are developed to estimate the surface Nusselt number and discharge coefficients within the domain of geometric and flow parameters. The novel correlations account for the parametric effects and can accurately predict the Nusselt number and discharge coefficient with deviations of 19.8% and 15.9%, respectively. These provide a capability for the engine designers to predict the heat transfer and pressure loss for leading edge jet impingement.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Brevet
,
P.
,
Dejeu
,
C.
,
Dorignac
,
E.
,
Jolly
,
M.
, and
Vullierme
,
J. J.
,
2002
, “
Heat Transfer to a Row of Impinging Jets in Consideration of Optimization
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4191
4200
.10.1016/S0017-9310(02)00128-X
3.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
4.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.10.2514/2.6304
5.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
(
3
), pp.
203
208
.10.2514/3.44036
6.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
160
169
.10.1016/S0142-727X(96)00136-1
7.
Gori
,
F.
, and
Bossi
,
L.
,
2003
, “
Optimal Slot Height in the Jet Cooling of a Circular Cylinder
,”
Appl. Therm. Eng.
,
23
(
7
), pp.
859
870
.10.1016/S1359-4311(03)00025-5
8.
Bond
,
T.
, and
Wright
,
W. B.
,
2004
, “
An Evaluation of Jet Impingement Heat Transfer Correlations for Piccolo Tube Application
,” NASA, Hanover, MD, Report No. 20040070756.
9.
Jordan
,
C. N.
,
2012
, “
Experimental Investigation of Leading Edge Jet Impingement with Varying Jet Geometries and Inlet Supply Conditions for Turbine Cooling Applications
,” Master's thesis,
Baylor University, Department of Mechanical Engineering
,
Waco, TX
.
10.
Jordan
,
C. N.
,
Elston
,
C. A.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Leading Edge Impingement With Racetrack Shaped Jets and Varying Inlet Supply Conditions
,”
ASME
Paper No. GT2013-94611.10.1115/GT2013-94611
11.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
12
), p.
122202
.1115/1.4034180
12.
Yu
,
J.
,
Peng
,
L.
,
Bu
,
X.
,
Shen
,
X.
,
Lin
,
G.
, and
Bai
,
L.
,
2018
, “
Experimental Investigation and Correlation Development of Jet Impingement Heat Transfer With Two Rows of Aligned Jet Holes on an Internal Surface of a Wing Leading Edge
,”
Chin. J. Aeronaut.
,
31
(
10
), pp.
1962
1972
.10.1016/j.cja.2018.07.016
13.
Bu
,
X.
,
Peng
,
L.
,
Lin
,
G.
,
Bai
,
L.
, and
Wen
,
D.
,
2016
, “
Jet Impingement Heat Transfer on a Concave Surface in a Wing Leading Edge: Experimental Study and Correlation Development
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
199
207
.10.1016/j.expthermflusci.2016.06.006
14.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2008
, “
Heat Transfer and Pressure Investigation of Dimple Impingement
,”
ASME J. Turbomach.
,
130
(
1
), p.
011003
.10.1115/1.2220048
15.
Hrycak
,
P.
,
1981
, “
Heat Transfer From a Row of Impinging Jets to Concave Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
407
419
.10.1016/0017-9310(81)90048-X
16.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
,
91
(
3
), pp.
149
155
.10.1115/1.3574713
17.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
,
1998
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Effect of Geometric Parameters
,”
Proceedings of the ASME Paper No. 98-GT-208.
18.
Fénot
,
M.
,
Vullierme
,
J. J.
, and
Dorignac
,
E.
,
2005
, “
A Heat Transfer Measurement of Jet Impingement With High Injection Temperature
,”
C. R. Méc.
,
333
(
10
), pp.
778
782
.10.1016/j.crme.2005.08.002
19.
Forster
,
M.
, and
Weigand
,
B.
,
2021
, “
Experimental and Numerical Investigation of Jet Impingement Cooling Onto a Concave Leading Edge of a Generic Gas Turbine Blade
,”
Int. J. Therm. Sci.
,
164
, p.
106862
.10.1016/j.ijthermalsci.2021.106862
20.
Tabakoff
,
W.
, and
Clevenger
,
W.
,
1972
, “
Gas Turbine Blade Heat Transfer Augmentation by Impingement of Air Jets Having Various Configurations
,”
ASME J. Eng. Power
,
94
(
1
), pp.
51
58
.10.1115/1.3445620
21.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures
,”
ASME J. Turbomach.
,
135
(
3
), p.
031021
.10.1115/1.4007529
22.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.10.1115/1.2927680
23.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Computational Investigation of Jet Impingement on Turbine Blade Leading Edge Cooling With Engine-Like Temperatures
,”
ASME
Paper No. GT2012-68811.10.1115/GT2012-68811
24.
Patil
,
V. S.
, and
Vedula
,
R. P.
,
2018
, “
Local Heat Transfer for Jet Impingement Onto a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
375
389
.10.1016/j.expthermflusci.2017.08.002
25.
Harmon
,
W. V.
,
Elston
,
C. A.
, and
Wright
,
L. M.
,
2014
, “
Experimental Investigation of Leading Edge Impingement Under High Rotation Numbers With Racetrack Shaped Jets
,”
ASME
Paper No. GT2014-26181.10.1115/GT2014-26181
26.
Harmon
,
W. V.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2015
, “
Combined Effects of Jet Plate Thickness and Fillet Radius on Leading Edge Jet Impingement With Round and Racetrack Shaped Jets
,”
ASME
Paper No. GT2015-43505.10.1115/GT2015-43505
27.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3497
3509
.10.1016/S0017-9310(99)00349-X
28.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets
,”
ASME
Paper No. HT2012-58410.10.1115/HT2012-58410
29.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
,
2002
, “
Experimental Racetrack Shaped Jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,”
ASME
Paper No. GT2002-30477. 10.1115/GT2002-30477
30.
Taslim
,
M. E.
, and
Rosso
,
N.
,
2012
, “
Experimental/Numerical Study of Multiple Rows of Confined Jet Impingement Normal to a Surface at Close Distances
,”
ASME
Paper No. GT 2012-68634.10.1115/2012-68634
31.
Taslim
,
M. E.
, and
Setayeshgar
,
L.
,
2001
, “
Experimental Leading-Edge Impingement Cooling Through Racetrack Crossover Holes
,”
ASME
Paper No. 2001-GT-0153. 10.1115/2001-GT-0153
32.
Florschuetz
,
L.
,
Metzger
,
D.
, and
Truman
,
C.
,
1981
, “
Jet Array Impingement With Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” NASA Contractor, Tempe, AZ, Report No. 1981, Document ID 19810006721.
33.
Callaghan
,
E. E.
, and
Dean
,
B. T.
,
1947
, “
Investigation of Flow Coefficient of Circular, Square, and Elliptical Orifices at High Pressure Ratios
,” National Advisory Committee for Aeronautics, University of North Texas, Report No. 1947.
34.
Lee
,
J.
,
Ren
,
Z.
,
Haegele
,
J.
,
Potts
,
G.
,
Sik Jin
,
J.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H.
,
2013
, “
Effects of Jet-To-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
136
(
5
), p.
051013
.10.1115/1.4025228
35.
Chen
,
L.
,
Brakmann
,
R. G. A.
,
Weigand
,
B.
,
Crawford
,
M.
, and
Poser
,
R.
,
2019
, “
Detailed Heat Transfer Investigation of an Impingement Jet Array With Large Jet-to-Jet Distance
,”
Int. J. Therm. Sci.
,
146
, p.
106058
.10.1016/j.ijthermalsci.2019.106058
36.
Han
,
J.-C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
,
CRC Press
,
Boca Raton, FL
.
37.
Leary
,
W. A.
, and
Tsai
,
D. H.
,
1951
, “
Metering of Gases by Means of the ASME Square-Edged Orifice With Flange Taps
,” Sloan Laboratory for the Automotive and Aircraft Engines, Massachusetts Institute of Technology, Cambridge, MA, Report.
38.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-SampleExperiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
39.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.10.1115/1.1624848
You do not currently have access to this content.