Abstract

The sperm density through the cervical canal plays a dynamic part in promoting the pregnancy progressions of organisms. Therefore, this study aims to probe the combined effects of concentration and temperature-dependent density on the creeping flow of Carreau nanofluid in the cervical canal as the first look in this direction. Chemical reaction and Hall effects are considered. The system of a physical model is simplified/streamlined using appropriate transformation (δ1). The system that describes the fluid model is recurrence/rearranged with aid of adaptive shoot techniques (AST) by a computer program using mathematica 13.1.0. Solutions are offered via sketches on the pressure profiles. Besides, graphs of streamlined are achieved in dissimilar values of the nonconstant density of the fluid. To get accurate results and approve the validation of the proposed technique, a comparison with Ibrahim (2022, “Adaptive Simulations to Pressure Distribution for Creeping Motion of Carreau Nanofluid With Variable Fluid Density Effects: Physiological Applications,” Therm. Sci. Eng. Prog., 32, p. 101337) is obtained and seems to be very good. The results indicate that high values of nonconstant density parameters impose a pressure gradient in the cervical canal, which supports the sperm to be more energetic in ovum fertilizing.

References

1.
David
,
B. D.
,
2009
,
Living at Micro Scale
,
Harvard University Press
,
Cambridge, MA
.
2.
Chwang
,
A. T.
, and
Wu
,
T. Y.
,
1975
, “
Hydromechanics of Low-Reynolds-Number Flow,” Part 2. Singularity Method for Stokes Flows
,”
J. Fluid. Mech.
,
67
(
4
), pp.
787
815
.10.1017/S0022112075000614
3.
Noreen
,
S.
,
Kausar
,
T.
,
Tripathi
,
D.
,
Ain
,
Q. U.
, and
Lu
,
D. C.
,
2020
, “
Heat Transfer Analysis on Creeping Flow Carreau Fluid Driven by Peristaltic Pumping in an Inclined Asymmetric Channel
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100486
.10.1016/j.tsep.2020.100486
4.
Ibrahim
,
M. G.
,
2022
, “
Adaptive Simulations to Pressure Distribution for Creeping Motion of Carreau Nanofluid With Variable Fluid Density Effects: Physiological Applications
,”
Therm. Sci. Eng. Prog.
,
32
, p.
101337
.10.1016/j.tsep.2022.101337
5.
Wang
,
H.
,
Yao
,
N.
,
Wang
,
B.
,
Shih
,
T.
, and
Wang
,
X.
,
2022
, “
Homogeneous Venturi-Effect Concentrators for Creeping Flows: Magnifying Flow Velocities and Heat Fluxes Simultaneously
,”
Appl. Therm. Eng.
,
206
, p.
118012
.10.1016/j.applthermaleng.2021.118012
6.
Hasona
,
W. M.
,
El-Shekhipy
,
A.
, and
Ibrahim
,
M. G.
,
2019
, “
Semi-Analytical Solution to MHD Peristaltic Flow of a Jeffrey Fluid in Presence of Joule Heat Effect by Using Multi-Step Differential Transform Method
,”
New Trends Math. Sci.
,
2
(
7
), pp.
123
137
.10.20852/ntmsci.2019.351
7.
Ibrahim
,
M. G.
,
2022
, “
Numerical Simulation to the Activation Energy Study on Blood Flow of Seminal Nanofluid With Mixed Convection Effects
,”
Comput. Methods Biomech. Biomed. Eng.
,
25
, pp.
1
11
.10.1080/10255842.2022.2063018
8.
Al-Hassan
,
T.
,
Habchi
,
C.
,
Lemenand
,
T.
, and
Azizi
,
F.
,
2021
, “
CFD Simulation of Creeping Flows in a Novel Split-and-Recombine Multifunctional Reactor
,”
Chem. Eng. Process.-Process Intensif.
,
162
, p.
108353
.10.1016/j.cep.2021.108353
9.
Hasona
,
W. M.
,
El-Shekhipy
,
A. A.
, and
Ibrahim
,
M. G.
,
2018
, “
Combined Effects of Magnetohydrodynamic and Temperature-Dependent Viscosity on Peristaltic Flow of Jeffrey Nanofluid Through a Porous Medium: Application to Oil Refinement
,”
Int. J. Heat Mass Transfer
,
126
, pp.
700
714
.10.1016/j.ijheatmasstransfer.2018.05.087
10.
Akbar
,
N. S.
,
2015
, “
Influence of Magnetic Field on Peristaltic Flow of a Casson Fluid in an Asymmetric Channel: Application in Crude Oil Refinement
,”
J. Magn. Magn. Mater.
,
378
, pp.
463
468
.10.1016/j.jmmm.2014.11.045
11.
Rafiq
,
M.
,
Yasmin
,
H.
,
Hayat
,
T.
, and
Alsaadi
,
F.
,
2019
, “
Effect of Hall and Ion-Slip on the Peristaltic Transport of Nanofluid: A Biomedical Application
,”
Chin. J. Phys.
,
60
, pp.
208
227
.10.1016/j.cjph.2019.04.016
12.
Tripathi
,
D.
, and
Anwar
,
B. O.
,
2014
, “
A Study on Peristaltic Flow of Nanofluids: Application in Drug Delivery Systems
,”
Int. J. Heat Mass Transfer
,
70
, pp.
61
70
.10.1016/j.ijheatmasstransfer.2013.10.044
13.
Ibrahim
,
M. G.
,
Hasona
,
W. M.
, and
ElShekhipy
,
A. A.
,
2019
, “
Concentration-Dependent Viscosity and Thermal Radiation Effects on MHD Peristaltic Motion of Synovial Nanofluid: Applications to Rheumatoid Arthritis Treatment
,”
Comput. Methods Programs Biomed.
,
170
(
2019
), pp.
39
52
.10.1016/j.cmpb.2019.01.001
14.
Raju
,
C. S. K.
,
Upadhy
,
S. M.
, and
Seth
,
D.
,
2021
, “
Thermal Convective Conditions on MHD Radiated Flow With Suspended Hybrid Nanoparticles
,”
Microsyst. Technol.
,
27
(
5
), pp.
1933
1942
.10.1007/s00542-020-04971-x
15.
Upadhy
,
S. M.
,
Raju
,
C. S. K.
,
Vajravelu
,
K.
,
Sathy
,
S.
, and
Farooq
,
U.
,
2022
, “
Significance of Radiative Magnetohydrodynamic Flow of Suspended PEG-Based ZrO2 and MgO2 Within a Conical Gap
,”
Waves Random Complex Media
, Taylor & Francis, Abingdon, UK, pp.
1
19
.10.1080/17455030.2021.2020372
16.
Hayat
,
T.
,
Tanveer
,
A.
, and
Alsaedi
,
A.
,
2016
, “
Mixed Convective Peristaltic Flow of Carreau–Yasuda Fluid With Thermal Deposition and Chemical Reaction
,”
Int. J. Heat Mass Transfer
,
96
, pp.
474
481
.10.1016/j.ijheatmasstransfer.2016.01.055
17.
Akbar
,
N. S.
,
Nadeem
,
S.
, and
Khan
,
Z. H.
,
2014
, “
Numerical Simulation of Peristaltic Flow of a Carreau Nanofluid in an Asymmetric Channel
,”
Alexandria Eng. J.
,
53
(
1
), pp.
191
197
.10.1016/j.aej.2013.10.003
18.
Nadeem
,
S.
,
Riaz
,
A.
,
Ellahi
,
R.
, and
Akbar
,
N. S.
,
2014
, “
Series Solution of Unsteady Peristaltic Flow of a Carreau Fluid in Eccentric Cylinders
,”
Ain Shams Eng. J.
,
5
(
1
), pp.
293
304
.10.1016/j.asej.2013.09.005
19.
Raju
,
C. S. K.
,
Ahammad
,
N. A.
,
Sajjan
,
K.
,
Shah
,
N. A.
,
Yook
,
S.-J.
, and
Kumar
,
M. D.
,
2022
, “
Nonlinear Movements of Axisymmetric Ternary Hybrid Nanofluids in a Thermally Radiated Expanding or Contracting Permeable Darcy Walls With Different Shapes and Densities: Simple Linear Regression
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106110
.10.1016/j.icheatmasstransfer.2022.106110
20.
Veeram
,
G.
,
Poojitha
,
P.
,
Katta
,
H.
,
Hemalatha
,
S.
,
Babu
,
M. J.
,
Raju
,
C. S. K.
,
Ali
,
N.
, and
Yook
,
S.
,
2022
, “
Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO2 + MgO) Flow by a Curved Shrinking Sheet With Thermal Radiation and Higher Order Chemical Reaction
,”
Mathematics
,
10
(
10
), p.
1706
.10.3390/math10101706
21.
Upadhya
,
S.
,
Raju
,
S. R.
,
Raju
,
C. S. K.
,
Shah
,
N. A.
, and
Chung
,
J. D.
,
2022
, “
Importance of Entropy Generation on Casson, Micropolar and Hybrid Magneto-Nanofluids in a Suspension of Cross Diffusion
,”
Chin. J. Phys.
,
77
, pp.
1080
1101
.10.1016/j.cjph.2021.10.016
22.
Ali
,
N.
, and
Hayat
,
T.
,
2017
, “
Heat Transfer Analysis for Peristaltic Flow of Carreau-Yasuda Fluid Through a Curved Channel With Radial Magnetic Field
,”
Int. J. Heat Mass Transfer
,
115
, pp.
777
783
10.1016/j.ijheatmasstransfer.2017.08.048
23.
Hayat
,
T.
,
Saleem
,
N.
,
Asghar
,
S.
,
Alhothuali
,
M. S.
, and
Alhomaidan
,
A.
,
2011
, “
Influence of Induced Magnetic Field and Heat Transfer on Peristaltic Transport of a Carreau Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
9
), pp.
3559
3577
.10.1016/j.cnsns.2010.12.038
24.
Khan
,
M. I.
,
Alzahrani
,
F.
,
Hobiny
,
A.
, and
Ali
,
Z.
,
2020
, “
Estimation of Entropy Generation in Carreau-Yasuda Fluid Flow Using Chemical Reaction With Activation Energy
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
9951
9964
.10.1016/j.jmrt.2020.05.085
25.
Ibrahim
,
M. G.
,
2022
, “
Concentration-Dependent Viscosity Effect on Magnetonano Peristaltic Flow of Powell-Eyring Fluid in a Divergent-Convergent Channel
,”
Int. Commun. Heat Mass Transfer
,
134
, p.
105987
.10.1016/j.icheatmasstransfer.2022.105987
26.
Matson
,
P. L.
,
Myssonski
,
K.
,
Yovich
,
S.
,
Morrison
,
L.
,
Irving
,
J.
, and
Bakos
,
H. W.
,
2010
, “
The Density of Human Semen and the Validation of Weight as an Indicator of Volume: A Multicentre Study
,”
Reprod. Biol.
,
10
(
2
), pp.
141
153
.10.1016/S1642-431X(12)60056-4
27.
Platten
,
J. K.
, and
Legros
,
L. C.
,
1984
,
Convection in Liquids
,
Springer
,
Berlin
.
28.
Gershuni
,
G. Z.
, and
Zhukhovitskii
,
E. M.
,
1976
,
Convective Stability of Incompressible Fluids
,
Keter
,
Jerusalem
.
29.
Glassl
,
M.
,
Hilt
,
M.
, and
Zimmermann
,
W.
,
2011
, “
Convection in Nanofluids With a Particle-Concentration-Dependent Thermal Conductivity
,”
Phys. Rev. E
,
83
(
4
), p.
046315
.10.1103/PhysRevE.83.046315
30.
Hall
,
E.
,
1879
, “
On a New Action of the Magnet on Electric Currents
,”
Am. J. Math.
,
2
(
3
), pp.
287
292
.10.2307/2369245
31.
Turkyilmazoglu
,
M.
,
2011
, “
Heat and Mass Transfer on the MHD Fluid Flow Due to a Porous Rotating Disk With Hall Current and Variable Properties
,” ASME
J. Heat Transfer-Trans. ASME
,
133
(
2
), p.
021701
.10.1115/1.4002634
32.
Shah
,
Z.
,
Islam
,
S.
,
Ayaz
,
H.
, and
Khan
,
S.
,
2019
, “
Radiative Heat and Mass Transfer Analysis of Micropolar Nanofluid Flow of Casson Fluid Between Two Rotating Parallel Plates With Effects of Hall Current
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
2
), p.
022401
.10.1115/1.4040415
33.
Kaladhar
,
K.
,
Reddy
,
K. M.
, and
Srinivasacharya
,
D.
,
2019
, “
Inclined Magnetic Field, Thermal Radiation, and Hall Current Effects on Mixed Convection Flow Between Vertical Parallel Plates
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
102501
.10.1115/1.4044391
34.
Charroyer
,
L.
,
Chiello
,
O.
, and
Sinou
,
J. J.
,
2020
, “
Estimation of Self-Sustained Vibration for a Finite Element Brake Model Based on the Shooting Method With a Reduced Basis Approximation of Initial Conditions
,”
J. Sound Vib.
,
468
, p.
115050
.10.1016/j.jsv.2019.115050
35.
Hieber
,
C. A.
,
1987
, “
Multilayer Rayleigh–Benard Instability Via Shooting Method
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
2
), pp.
538
540
.10.1115/1.3248119
36.
Al Sulti
,
F.
,
2019
, “
Impact of Cattaneo–Christov Heat Flux Model on Stagnation-Point Flow Toward a Stretching Sheet With Slip Effects
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
2
), p.
022003
.10.1115/1.4041959
37.
Puneeth
,
V.
,
Manjunatha
,
S.
,
Makinde
,
O. D.
, and
Gireesha
,
B. J.
,
2021
, “
Bioconvection of a Radiating Hybrid Nanofluid Past a Thin Needle in the Presence of Heterogeneous–Homogeneous Chemical Reaction
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
4
), p.
042502
.10.1115/1.4049844
38.
Reis
,
E. M.
, and
Alves
,
L. S. B.
,
2021
, “
Convective and Absolute Instabilities Induced by Viscous Dissipation in the Thermocapillary Convection With Through-Flow
,”
ASME J. Heat Transfer- Trans. ASME
,
143
(
5
), p.
052601
.10.1115/1.4050312
You do not currently have access to this content.