Abstract

This report presents a similarity solution for the buoyancy-driven flow of viscous incompressible fluid past an inclined porous plate influenced by nonlinear thermal radiation and thermophoresis. The boundary layer equations are reduced to some set of ODEs through similarity variables. Furthermore, the ODEs are converted to IVP through the shooting technique. The numerical solution is obtained through the Runge–Kutta algorithm in Maple software. The impact of the emergence parameters present in the mathematical model is explained through graphs and tables. Results obtained showed that with combined effects of suction/injection and nonlinear thermal radiation, the heat transfer rate is directly proportional to the angle of inclination but inversely proportional to plate shear stress and mass transfer rate. Furthermore, it was observed that the heat transfer rate declines with higher buoyancy force but enhances the plate shear stress. Also, the mass transfer rate could be enhanced with a higher thermophoresis effect. Suction propagates the velocity and temperature profiles whereas it decreases the rate of particle concentration, while the contrast is true for injection. In addition, nonlinear thermal radiation complements the fluid temperature, particle concentration, and fluid transport.

References

1.
Goren
,
S. L.
,
1977
, “
Thermophoresis of Aerosol Particles in the Laminar Boundary Layer on a Flat Plate
,”
J. Colloid Interface Sci.
,
61
(
1
), pp.
77
85
.10.1016/0021-9797(77)90416-7
2.
Aziz
,
A.
,
2009
, “
A Similarity Solution for Laminar Thermal Boundary Layer Over a Flat Plate With a Convective Surface Boundary Condition
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
1064
1068
.10.1016/j.cnsns.2008.05.003
3.
Ali
,
N.
,
Nazeer
,
M.
,
Javed
,
T.
, and
Siddiqui
,
M. A.
,
2018
, “
Buoyancy-Driven Cavity Flow of a Micropolar Fluid With Variably Heated Bottom Wall
,”
Heat Transf. Res.
,
49
(
5
), pp.
457
481
.10.1615/HeatTransRes.2018019422
4.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2010
, “
MHD Mixed Convection From a Vertical Plate Embedded in a Porous Medium With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1813
1820
.10.1016/j.ijthermalsci.2010.05.015
5.
Makinde
,
O. D.
, and
Olanrewaju
,
P. O.
,
2010
, “
Buoyancy Effects on Thermal Boundary Layer Over a Vertical Plate With a Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
44502
.10.1115/1.4001386
6.
Jha
,
B. K.
, and
Samaila
,
G.
,
2020
, “
A Similarity Solution for Natural Convection Flow Near a Vertical Plate With Thermal Radiation
,”
Microgravity Sci. Technol.
,
32
(
6
), pp.
1031
1038
.10.1007/s12217-020-09830-y
7.
Nazeer
,
M.
,
2021
, “
Numerical and Perturbation Solutions of Cross Flow of an Eyring-Powell Fluid
,”
SN Appl. Sci.
,
3
(
2
), pp.
1
11
.10.1007/s42452-021-04173-8
8.
Ali
,
N.
,
Nazeer
,
F.
, and
Nazeer
,
M.
,
2018
, “
Flow and Heat Transfer Analysis of an Eyring–Powell Fluid in a Pipe
,”
Z. Naturforsch. A
,
73
(
3
), pp.
265
274
.10.1515/zna-2017-0435
9.
Dash
,
S. M.
, and
Lee
,
T. S.
,
2014
, “
Natural Convection From Inclined Square Cylinder Using Novel Flexible Forcing IB-LBM Approach
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
1
), pp.
91
103
.10.1080/19942060.2014.11015500
10.
Dash
,
S. M.
, and
Lee
,
T. S.
,
2015
, “
Natural Convection in a Square Enclosure With a Square Heat Source at Different Horizontal and Diagonal Eccentricities
,”
Numer. Heat Transfer Part A Appl.
,
68
(
6
), pp.
686
710
.10.1080/10407782.2014.994414
11.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1991
, “
Coupled Heat and Mass Transfer by Natural Convection From Vertical Surfaces in Porous Media
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1189
1194
.10.1016/0017-9310(91)90027-C
12.
Sheikholeslami
,
M.
, and
Shehzad
,
S. A.
,
2017
, “
Thermal Radiation of Ferrofluid in Existence of Lorentz Forces Considering Variable Viscosity
,”
Int. J. Heat Mass Transfer
,
109
, pp.
82
92
.10.1016/j.ijheatmasstransfer.2017.01.096
13.
Kumar
,
D.
, and
Singh
,
A. K.
,
2015
, “
Effect of Induced Magnetic Field on Natural Convection With Newtonian Heating/Cooling in Vertical Concentric Annuli
,”
Procedia Eng.
,
127
, pp.
568
574
.10.1016/j.proeng.2015.11.346
14.
Jha
,
B. K.
, and
Oni
,
M.
,
2019
, “
Natural Convection Flow in a Vertical Annulus With Time-Periodic Thermal Boundary Conditions
,”
Propuls. Power Res.
,
8
(
1
), pp.
47
55
.10.1016/j.jppr.2018.12.002
15.
Jat
,
R. N.
, and
Chaudhary
,
S.
,
2010
, “
Radiation Effects on the MHD Flow Near the Stagnation Point of a Stretching Sheet
,”
Z. Angew. Math. Phys.
,
61
(
6
), pp.
1151
1154
.10.1007/s00033-010-0072-5
16.
Qayyum
,
S.
,
Khan
,
M. I.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
A Framework for Nonlinear Thermal Radiation and Homogeneous-Heterogeneous Reactions Flow Based on Silver-Water and Copper-Water Nanoparticles: A Numerical Model for Probable Error
,”
Results Phys.
,
7
, pp.
1907
1914
.10.1016/j.rinp.2017.05.020
17.
Ishak
,
A.
,
Yacob
,
N. A.
, and
Bachok
,
N.
,
2011
, “
Radiation Effects on the Thermal Boundary Layer Flow Over a Moving Plate With Convective Boundary Condition
,”
Meccanica
,
46
(
4
), pp.
795
801
.10.1007/s11012-010-9338-4
18.
Das
,
K.
, and
Sarkar
,
A.
,
2016
, “
Effect of Melting on an MHD Micropolar Fluid Flow Toward a Shrinking Sheet With Thermal Radiation
,”
J. Appl. Mech. Tech. Phys.
,
57
(
4
), pp.
681
689
.10.1134/S002189441604012X
19.
Hossain
,
M. A.
, and
Takhar
,
H. S.
,
1996
, “
Radiation Effect on Mixed Convection Along a Vertical Plate With Uniform Surface Temperature
,”
Heat Mass Transfer
,
31
(
4
), pp.
243
248
.10.1007/BF02328616
20.
Das
,
K.
,
2012
, “
Impact of Thermal Radiation on MHD Slip Flow Over a Flat Plate With Variable Fluid Properties
,”
Heat Mass Transfer
,
48
(
5
), pp.
767
778
.10.1007/s00231-011-0924-3
21.
Qasem
,
S. A.
,
Sivasankaran
,
S. A.
,
Siri
,
Z.
, and
Othman
,
W. A. M.
,
2020
, “
Effect of Thermal Radiation on Natural Conviction of a Nanofluid in a Square Cavity With a Solid Body
,”
Therm. Sci.
,
25
(
3
), p.
182
.10.2298/TSCI191003182Q
22.
Hayat
,
T.
,
Khan
,
M. I.
,
Waqas
,
M.
,
Alsaedi
,
A.
, and
Farooq
,
M.
,
2017
, “
Numerical Simulation for Melting Heat Transfer and Radiation Effects in Stagnation Point Flow of Carbon–Water Nanofluid
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
1011
1024
.10.1016/j.cma.2016.11.033
23.
Mikhailenko
,
S. A.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2021
, “
Thermal Radiation and Natural Convection in a Large-Scale Enclosure Heated From Below: Building Application
,”
Build. Simul.
,
14
(
3
), pp.
681
691
.10.1007/s12273-020-0668-4
24.
Jha
,
B. K.
, and
Samaila
,
G.
,
2021
, “
Nonlinear Approximation for Natural Convection Flow Near a Vertical Plate With Thermal Radiation Effect
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
074501
.10.1115/1.4050854
25.
Aly
,
E. H.
, and
Ebaid
,
A.
,
2016
, “
Exact Analysis for the Effect of Heat Transfer on MHD and Radiation Marangoni Boundary Layer Nanofluid Flow Past a Surface Embedded in a Porous Medium
,”
J. Mol. Liq
,,
215
, pp.
625
639
.10.1016/j.molliq.2015.12.108
26.
El-Arabawy
,
H. A. M.
,
2003
, “
Effect of Suction/Injection on the Flow of a Micropolar Fluid Past a Continuously Moving Plate in the Presence of Radiation
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1471
1477
.10.1016/S0017-9310(02)00320-4
27.
Adesanya
,
S. O.
,
2015
, “
Free Convective Flow of Heat Generating Fluid Through a Porous Vertical Channel With Velocity Slip and Temperature Jump
,”
Ain Shams Eng. J.
,
6
(
3
), pp.
1045
1052
.10.1016/j.asej.2014.12.008
28.
Lin
,
Y.
,
Zheng
,
L.
,
Li
,
B.
, and
Ma
,
L.
,
2015
, “
A New Diffusion for Laminar Boundary Layer Flow of Power Law Fluids Past a Flat Surface With Magnetic Effect and Suction or Injection
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1090
1097
.10.1016/j.ijheatmasstransfer.2015.07.067
29.
Nazeer
,
M.
,
Ali
,
N.
,
Javed
,
T.
, and
Asghar
,
Z.
,
2018
, “
Natural Convection Through Spherical Particles of a Micropolar Fluid Enclosed in a Trapezoidal Porous Container
,”
Eur. Phys. J. Plus
,
133
(
10
), p.
423
.10.1140/epjp/i2018-12217-5
30.
Nazeer
,
M.
,
Ali
,
N.
,
Javed
,
T.
, and
Razzaq
,
M.
,
2019
, “
Finite Element Simulations for Energy Transfer in a Lid-Driven Porous Square Container Filled With Micropolar Fluid: Impact of Thermal Boundary Conditions and Peclet Number
,”
Int. J. Hydrogen Energy
,
44
(
14
), pp.
7656
7666
.10.1016/j.ijhydene.2019.01.236
31.
Hussain
,
F.
,
Subia
,
G. S.
,
Nazeer
,
M.
,
Ghafar
,
M. M.
,
Ali
,
Z.
, and
Hussain
,
A.
,
2021
, “
Simultaneous Effects of Brownian Motion and Thermophoretic Force on Eyring–Powell Fluid Through Porous Geometry
,”
Z. Naturforsch. A
,
76
(
7
), pp.
569
580
.10.1515/zna-2021-0004
32.
Nazeer
,
M.
,
Ali
,
N.
,
Ahmad
,
F.
, and
Latif
,
M.
,
2020
, “
Numerical and Perturbation Solutions of Third-Grade Fluid in a Porous Channel: Boundary and Thermal Slip Effects
,”
Pramana
,
94
(
1
), pp.
1
15
.10.1007/s12043-019-1910-4
33.
Mills
,
A. F.
,
Xu
,
H.
, and
Ayazi
,
F.
,
1984
, “
The Effect of Wall Suction and Thermophoresis on Aerosol Particle Deposition From a Laminar Boundary Layer on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
27
(
7
), pp.
1110
1113
.10.1016/0017-9310(84)90127-3
34.
Tsai
,
R.
,
1999
, “
A Simple Approach for Evaluating the Effect of Wall Suction and Thermophoresis on Aerosol Particle Deposition From a Laminar Flow Over a Flat Plate
,”
Int. Commun. Heat Mass Transfer
,
26
(
2
), pp.
249
257
.10.1016/S0735-1933(99)00011-1
35.
Jha
,
B. K.
, and
Samaila
,
G.
,
2020
, “
Thermal Radiation Effect on Boundary Layer Over a Flat Plate Having Convective Surface Boundary Condition
,”
SN Appl. Sci.
,
2
(
3
), p.
381
.10.1007/s42452-020-2167-8
36.
Alam
,
M. S.
,
Rahman
,
M. M.
, and
Sattar
,
M. A.
,
2009
, “
Commun Nonlinear Sci Numer Simulat on the Effectiveness of Viscous Dissipation and Joule Heating on Steady Magnetohydrodynamic Heat and Mass Transfer Flow Over an Inclined Radiate Isothermal Permeable Surface in the Presence of Thermophoresis
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2132
2143
.10.1016/j.cnsns.2008.06.008
37.
Selim
,
A.
,
Hossain
,
M. A.
, and
Rees
,
D. A. S.
,
2003
, “
The Effect of Surface Mass Transfer on Mixed Convection Flow Past a Heated Vertical Flat Permeable Plate With Thermophoresis
,”
Int. J. Therm. Sci.
,
42
(
10
), pp.
973
982
.10.1016/S1290-0729(03)00075-9
38.
Alam
,
M. S.
,
Rahman
,
M. M.
, and
Sattar
,
M. A.
,
2008
, “
Effects of Variable Suction and Thermophoresis on Steady MHD Combined Free-Forced Convective Heat and Mass Transfer Flow Over a Semi-Infinite Permeable Inclined Plate in the Presence of Thermal Radiation
,”
Int. J. Therm. Sci.
,
47
(
6
), pp.
758
765
.10.1016/j.ijthermalsci.2007.06.006
39.
Ali
,
A. H.
,
Bouaziz
,
M. N.
, and
Hanini
,
S.
,
2014
, “
Free Convection Boundary Layer Flow From a Vertical Flat Plate Embedded in a Darcy Porous Medium Filled With a Nanofluid: Effects of Magnetic Field and Thermal Radiation
,”
Arab, J. Sci. Eng.
,
39
(
11
), pp.
8331
8340
.10.1007/s13369-014-1405-z
40.
Batchelor
,
G. K.
, and
Shen
,
C.
,
1985
, “
Thermophoretic Deposition of Particles in Gas Flowing Over Cold Surfaces
,”
J. Colloid Interface Sci.
,
107
(
1
), pp.
21
37
.10.1016/0021-9797(85)90145-6
41.
Raptis
,
A.
,
1998
, “
Flow of a Micropolar Fluid Past a Continuously Moving Plate by the Presence of Radiation
,”
Int. J. Heat Mass Transfer
,
41
(
18
), pp.
2865
2866
.10.1016/S0017-9310(98)00006-4
42.
Chamkha
,
A. J.
,
2000
, “
Thermal Radiation and Buoyancy Effects on Hydromagnetic Flow Over an Accelerating Permeable Surface With Heat Source or Sink
,”
Int. J. Eng. Sci.
,
38
(
15
), pp.
1699
1712
.10.1016/S0020-7225(99)00134-2
43.
Rahman
,
M. M.
, and
Sattar
,
M. A.
,
2006
, “
Magnetohydrodynamic Convective Flow of a Micropolar Fluid Past a Continuously Moving Vertical Porous Plate in the Presence of Heat Generation/Absorption
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
2
), pp.
142
152
.10.1115/1.2136918
44.
Alam
,
M. S.
,
Rahman
,
M. M.
, and
Samad
,
M. A.
,
2006
, “
Numerical Study of the Combined Free-Forced Convection and Mass Transfer Flow Past a Vertical Porous Plate in a Porous Medium With Heat Generation and Thermal Diffusion
,”
Nonlinear Anal. Model. Control
,
11
(
4
), pp.
331
343
.10.15388/NA.2006.11.4.14737
You do not currently have access to this content.