Abstract

Linear and weakly nonlinear stability analyses of Rayleigh–Bénard convection (RBC) in a radiating Newtonian fluid are studied in the paper. The optical properties of the Newtonian fluid are considered to be independent of the wavelength of radiation. A gray medium thus assumed allows us to consider two asymptotic cases: (a) optically thin fluid medium (transparent) and (b) optically thick fluid medium (opaque). Using the solution in terms of a truncated Fourier series representation, we arrive at the analytical expression for the Rayleigh number and examine the thermal radiation properties. A modified Lorenz model, which has in it the influence of the radiation parameters, is derived. The analytically intractable three-dimensional Lorenz model is then projected into the one-dimensional Stuart–Landau equation. The analytical solution of the Stuart–Landau equation is used to quantify the heat transport. It is shown that the radiation inhibits the primary instability of convection in both transparent and opaque media. However, the delay of convection is more in the opaque medium compared to that in the transparent medium. Inclusion of a transparent medium creates a “heat-sink-like situation,” whereas the opaque medium leads to an “enhanced-thermal-diffusivity situation.” Both these situations result in diminished heat transport in the RBC system. The analytical expression of the Hopf–Rayleigh number is obtained by linearizing the modified Lorenz model around one of its postonset critical points. This number provides information about the onset of chaos in the dynamical system. The impact of the radiation effect is to delay the appearance of chaos.

References

1.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
Oxford
.
2.
Getling
,
A.
, and
Kosovichev
,
A.
,
1980
, “
Flow Scales in the Solar Convection Zone From Helioseismological Data
,”
Proceedings of the 25th All-Russia Conference on Solar and Solar-Terrestrial Physics
, Vol.
16
, The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, St. Petersburg, Russian, Oct. 4–8, pp.
363
365
.
3.
Platten
,
J.
, and
Legros
,
J.
,
1984
,
Convection in Liquids
,
Springer
,
Berlin, Germany
.
4.
Goody
,
R.
,
1956
, “
The Influence of Radiative Transfer on Cellular Convection
,”
J. Fluid Mech.
,
1
(
4
), pp.
424
435
.10.1017/S0022112056000263
5.
Spiegel
,
E.
,
1960
, “
The Convective Instability of a Radiating Fluid Layer
,”
Astrophys. J.
,
132
(
11
), p.
716
.10.1086/146977
6.
Gille
,
J.
, and
Goody
,
R.
,
1964
, “
Convection in a Radiating Gas
,”
J. Fluid Mech.
,
20
(
1
), pp.
47
79
.10.1017/S002211206400101X
7.
Bdéoui
,
F.
, and
Soufiani
,
A.
,
1997
, “
The Onset of Rayleigh-Bénard Instability in Molecular Radiating Gases
,”
Phys. Fluids
,
9
(
12
), pp.
3858
3872
.10.1063/1.869486
8.
Hutchison
,
J.
, and
Richards
,
R.
,
1999
, “
Effect of Nongray Gas Radiation on Thermal Stability in Carbon Dioxide
,”
J. Thermophys. Heat Transfer
,
13
(
1
), pp.
25
32
.10.2514/2.6425
9.
Kourganoff
,
V.
, and
Richtmyer
,
R.
,
1953
, “
Basic Methods in Transfer Problems - Radiative Equilibrium and Neutron Diffusion
,”
Phys. Today
,
6
(
6
), pp.
14
14
.10.1063/1.3061255
10.
Murgai
,
M.
, and
Khosla
,
P.
,
1962
, “
A Study of the Combined Effect of Thermal Radiative Transfer and a Magnetic Field on the Gravitational Convection of an Ionized Fluid
,”
J. Fluid Mech.
,
14
(
3
), pp.
433
451
.10.1017/S0022112062001342
11.
Khosla
,
P.
, and
Murgai
,
M.
,
1963
, “
A Study of the Combined Effect of Thermal Radiative Transfer and Rotation on the Gravitational Stability of a Hot Fluid
,”
J. Fluid Mech.
,
16
(
01
), p.
97
.10.1017/S0022112063000604
12.
Hottel
,
H.
, and
Sarofim
,
A.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
.
13.
Yang
,
W.-M.
,
1995
, “
Effect of Modulation on Radiation-Induced Instability
,”
Int. J. Heat Mass Transfer
,
38
(
1
), pp.
47
53
.10.1016/0017-9310(94)00144-K
14.
Larson
,
V.
,
2000
, “
Stability Properties of and Scaling Laws for a Dry Radiative-Convective Atmosphere
,”
Q. J. R. Meteorolog. Soc.
,
126
(
562
), pp.
145
171
.10.1002/qj.49712656208
15.
Yan
,
W.-M.
, and
Li
,
H.-Y.
,
2001
, “
Radiation Effects on Mixed Convection Heat Transfer in a Vertical Square Duct
,”
Int. J. Heat Mass Transfer
,
44
(
7
), pp.
1401
1410
.10.1016/S0017-9310(00)00148-4
16.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor and Francis
,
Washington, DC
.
17.
Lan
,
C.
,
Ezekoye
,
O.
,
Howell
,
J.
, and
Ball
,
K.
,
2003
, “
Stability Analysis for Three-Dimensional Rayleigh-Bénard Convection With Radiatively Participating Medium Using Spectral Methods
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1371
1383
.10.1016/S0017-9310(02)00422-2
18.
Christophorides
,
C.
, and
Davis
,
S.
,
1970
, “
Thermal Instability With Radiative Transfer
,”
Phys. Fluids
,
13
(
2
), p.
222
.10.1063/1.1692914
19.
Vincenti
,
W.
, and
Traugott
,
S.
,
1971
, “
The Coupling of Radiative Transfer and Gas Motion
,”
Annu. Rev. Fluid Mech.
,
3
(
1
), pp.
89
116
.10.1146/annurev.fl.03.010171.000513
20.
Arpaci
,
V.
, and
Gozum
,
D.
,
1973
, “
Thermal Stability of Radiating Fluids: The Bénard Problem
,”
Phys. Fluids
,
16
(
5
), p.
581
.10.1063/1.1694391
21.
Lienhard
,
J.
,
1990
, “
Thermal Radiation in Rayleigh-Bénard Instability
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
100
109
.10.1115/1.2910329
22.
Prasanna
,
S.
, and
Venkateshan
,
S.
,
2014
, “
Convection Induced by Radiative Cooling of a Layer of Participating Medium
,”
Phys. Fluids
,
26
(
5
), p.
056603
.10.1063/1.4874343
23.
Urban
,
P.
,
Králík
,
T.
,
Hanzelka
,
P.
,
Musilová
,
V.
,
Věžník
,
T.
,
Schmoranzer
,
D.
, and
Skrbek
,
L.
,
2020
, “
Thermal Radiation in Rayleigh-Bénard Convection Experiments
,”
Phys. Rev. E
,
101
(
4
), p.
43106
.10.1103/PhysRevE.101.043106
24.
Joseph
,
D.
,
1966
, “
Nonlinear Stability of the Boussinesq Equations by the Method of Energy
,”
Arch. Rational Mech. Anal.
,
22
(
3
), pp.
163
184
.10.1007/BF00266474
25.
Rajagopal
,
K.
,
Ruzicka
,
M.
, and
Srinivasa
,
A.
,
1996
, “
On the Oberbeck-Boussinesq Approximation
,”
Math. Models Methods Appl. Sci.
,
6
(
8
), pp.
1157
1167
.10.1142/S0218202596000481
26.
Siddheshwar
,
P.
, and
Kanchana
,
C.
,
2017
, “
Unicellular Unsteady Rayleigh-Bénard Convection in Newtonian Liquids and Newtonian Nanoliquids Occupying Enclosures: New Findings
,”
Int. J. Mech. Sci.
,
131–132
(
10
), pp.
1061
1072
.10.1016/j.ijmecsci.2017.07.050
27.
Saltzman
,
B.
,
1962
, “
Finite Amplitude Free Convection as an Initial Value Problems
,”
J. Atmos. Sci.
,
19
(
4
), pp.
329
341
.10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
28.
Lorenz
,
E.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
You do not currently have access to this content.