Abstract

The Falkner–Skan problem for stretching or shrining wedge is generalized for nanoparticle aggregation effects. The model is developed in the presence of the magnetic field, thermal radiation, and suction/injection effects. For the inclusion of nanoparticle aggregation effects, modifications of the Krieger-Dougherty model and Maxwell and Bruggeman models are used to predict effective viscosity and thermal conductivity of titania–ethylene glycol (TiO2/EG) nanofluid, respectively. These models are already tested experimentally in the past and are known to predict the true values for the TiO2/EG nanofluid with aggregated nanoparticles. The system of equations depicting the Falkner–Skan problem for a wedge with nanoparticle aggregation effects is transformed via similarity transformations and solved via the “bvp4c” function, which is accessible by matlab software. The validation of results is done through a comparison of results with published literature and a comparison of present results with the “bvp5c” function and RKF-Shooting Technique. As suggested by the previously published experimental studies, it is observed that the nanoparticle aggregation effects are strong even when the nanoparticle concentration is low. The heat transmission rate of TiO2/EG nanofluid is seen as higher with nanoparticle aggregation effects in comparison to its absence. The streamlines become denser and more intense with the presence of a magnetic field. The results of this study apply to several thermal systems, engineering, and industrial process, which utilize nanofluid for cooling, and heating processes.

References

1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Am. Soc. Mech. Eng. Fluids Eng. Div. FED
,
231
, pp.
99
105
.https://www.osti.gov/servlets/purl/196525
2.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy
,
193
, pp.
393
413
.10.1016/j.apenergy.2017.02.064
3.
Gómez-Villarejo
,
R.
,
Martín
,
E. I.
,
Navas
,
J.
,
Sánchez-Coronilla
,
A.
,
Aguilar
,
T.
,
Gallardo
,
J. J.
,
Alcántara
,
R.
,
De los Santos
,
D.
,
Carrillo-Berdugo
,
I.
, and
Fernández-Lorenzo
,
C.
,
2017
, “
Ag-Based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-Level Insights
,”
Appl. Energy
,
194
, pp.
19
29
.10.1016/j.apenergy.2017.03.003
4.
Zeng
,
J.
, and
Xuan
,
Y.
,
2018
, “
Enhanced Solar Thermal Conversion and Thermal Conduction of MWCNT-SiO2/Ag Binary Nanofluids
,”
Appl. Energy
,
212
(
12
), pp.
809
819
.10.1016/j.apenergy.2017.12.083
5.
Motevasel
,
M.
,
Nazar
,
A. R. S.
, and
Jamialahmadi
,
M.
,
2018
, “
The Effect of Nanoparticles Aggregation on the Thermal Conductivity of Nanofluids at Very Low Concentrations: Experimental and Theoretical Evaluations
,”
Heat Mass Transfer
,
54
(
1
), pp.
125
133
.10.1007/s00231-017-2116-2
6.
Chen
,
J.
,
Zhao
,
C. Y.
, and
Wang
,
B. X.
,
2020
, “
Effect of Nanoparticle Aggregation on the Thermal Radiation Properties of Nanofluids: An Experimental and Theoretical Study
,”
Int. J. Heat Mass Transfer
,
154
, p.
119690–14
.10.1016/j.ijheatmasstransfer.2020.119690
7.
Chen
,
H.
,
Ding
,
Y.
,
He
,
Y.
, and
Tan
,
C.
,
2007
, “
Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids
,”
Chem. Phys. Lett.
,
444
(
4–6
), pp.
333
337
.10.1016/j.cplett.2007.07.046
8.
Ahmad
,
S.
,
Coban
,
H. H.
,
Khan
,
M. N.
,
Khan
,
U.
,
Shi
,
Q. H.
,
Muhammad
,
T.
,
Chinram
,
R.
, and
Kadry
,
S.
,
2021
, “
Computational Analysis of the Unsteady 3D Chemically Reacting MHD Flow With the Properties of Temperature Dependent Transpose Suspended Maxwell Nanofluid
,”
Case Stud. Therm. Eng.
,
26
(
6
), p.
101169
.10.1016/j.csite.2021.101169
9.
Rawat
,
S. K.
, and
Kumar
,
M.
,
2020
, “
Cattaneo–Christov Heat Flux Model in Flow of Copper Water Nanofluid Through a Stretching/Shrinking Sheet on Stagnation Point in Presence of Heat Generation/Absorption and Activation Energy
,”
Int. J. Appl. Comput. Math.
,
6
(
4
), pp.
1
26
.10.1007/s40819-020-00865-8
10.
Rawat
,
S. K.
,
Upreti
,
H.
, and
Kumar
,
M.
,
2020
, “
Thermally Stratified Nanofluid Flow Over Porous Surface Cone With Cattaneo–Christov Heat Flux Approach and Heat Generation (or) Absorption
,”
SN Appl. Sci.
,
2
(
2
), pp.
1
18
.10.1007/s42452-020-2099-3
11.
Mishra
,
A.
, and
Kumar
,
M.
,
2020
, “
Velocity and Thermal Slip Effects on MHD Nanofluid Flow Past a Stretching Cylinder With Viscous Dissipation and Joule Heating
,”
SN Appl. Sci.
,
2
(
8
), pp.
1
13
.10.1007/s42452-020-3156-7
12.
Uddin
,
Z.
,
Vishwak
,
K. S.
, and
Harmand
,
S.
,
2021
, “
Numerical Duality of MHD Stagnation Point Flow and Heat Transfer of Nanofluid Past a Shrinking/Stretching Sheet: Metaheuristic Approach
,”
Chin. J. Phys.
,
73
(
6
), pp.
442
461
.10.1016/j.cjph.2021.07.018
13.
Bai
,
Y.
,
Wan
,
S.
, and
Zhang
,
Y.
,
2021
, “
Unsteady Magnetohydrodynamics Stagnation-Point Flow of Fractional Oldroyd-B Fluid Over a Stretching Sheet With Modified Fractional Fourier's Law
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
093601
.10.1115/1.4051666
14.
Jha
,
B. K.
, and
Samaila
,
G.
,
2021
, “
Nonlinear Approximation for Natural Convection Flow Near a Vertical Plate With Thermal Radiation Effect
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
074501
.10.1115/1.4050854
15.
Falkneb
,
V. M.
, and
Skan
,
S. W.
,
1931
, “
LXXXV. Solutions of the Boundary-Layer Equations
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
12
(
80
), pp.
865
896
.10.1080/14786443109461870
16.
Uddin
,
Z.
,
2015
, “
MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
,”
Int. J. Math.
,
5
, pp.
774
778
.10.5281/zenodo.1100765
17.
Mishra
,
A.
, and
Kumar
,
M.
,
2021
, “
Numerical Analysis of MHD Nanofluid Flow Over a Wedge, Including Effects of Viscous Dissipation and Heat Generation/Absorption, Using Buongiorno Model
,”
Heat Transfer
,
50
(
8
), pp.
8453
8474
.10.1002/htj.22284
18.
Rawat
,
S. K.
,
Upreti
,
H.
, and
Kumar
,
M.
,
2021
, “
Comparative Study of Mixed Convective MHD Cu-Water Nanofluid Flow Over a Cone and Wedge Using Modified Buongiorno's Model in Presence of Thermal Radiation and Chemical Reaction Via Cattaneo-Christov Double Diffusion Model
,”
J. Appl. Comput. Mech.
,
7
(
3
), pp.
1383
1402
.https://jacm.scu.ac.ir/article_15395.html
19.
Raju
,
C. S. K.
, and
Sandeep
,
N.
,
2016
, “
Falkner-Skan Flow of a Magnetic-Carreau Fluid Past a Wedge in the Presence of Cross Diffusion Effects
,”
Eur. Phys. J. Plus
,
131
(
8
), pp.
1
13
.10.1140/epjp/i2016-16267-3
20.
Sandeep
,
N.
, and
Reddy
,
M. G.
,
2017
, “
Heat Transfer of Nonlinear Radiative Magnetohydrodynamic Cu-Water Nanofluid Flow Over Two Different Geometries
,”
J. Mol. Liq.
,
225
, pp.
87
94
.10.1016/j.molliq.2016.11.026
21.
Kudenatti
,
R. B.
, and
Sandhya
,
L.
,
2021
, “
Local Thermal Nonequilibrium Analysis of Boundary Layer Flow of Carreau Fluid Over a Wedge in a Porous Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
071801
.10.1115/1.4051128
22.
Wang
,
C. Y.
,
2021
, “
Heat Transfer From a Concentrated Tip Source in Falkner–Skan Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
094502
.10.1115/1.4051674
23.
Ibrahim
,
W.
, and
Tulu
,
A.
,
2019
, “
Magnetohydrodynamic (MHD) Boundary Layer Flow Past a Wedge With Heat Transfer and Viscous Effects of Nanofluid Embedded in Porous Media
,”
Math. Probl. Eng.
,
2019
, pp.
1
12
.10.1155/2019/4507852
24.
Bano
,
N.
,
Singh
,
B. B.
, and
Sayyed
,
S. R.
,
2020
, “
MHD Heat Transfer Flow of Casson Fluid With Velocity and Thermal Slips Over a Stretching Wedge in the Presence of Thermal Radiation
,”
Diffus. Found.
,
26
, pp.
1
22
.10.4028/www.scientific.net/DF.26.1
25.
Waini
,
I.
,
Ishak
,
A.
, and
Pop
,
I.
,
2020
, “
MHD Flow and Heat Transfer of a Hybrid Nanofluid Past a Permeable Stretching/Shrinking Wedge
,”
Appl. Math. Mech. (English Ed.)
,
41
(
3
), pp.
507
520
.10.1007/s10483-020-2584-7
26.
Anuar
,
N. S.
,
Bachok
,
N.
,
Arifin
,
N. M.
, and
Rosali
,
H.
,
2021
, “
Analysis of Al2O3-Cu Nanofluid Flow Behaviour Over a Permeable Moving Wedge With Convective Surface Boundary Conditions
,”
J. King Saud Univ. - Sci.
,
33
(
3
), p.
101370
.10.1016/j.jksus.2021.101370
27.
Mackolil
,
J.
, and
Mahanthesh
,
B.
,
2021
, “
Sensitivity Analysis of Marangoni Convection in TiO2–EG Nanoliquid With Nanoparticle Aggregation and Temperature-Dependent Surface Tension
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2085
2098
.10.1007/s10973-020-09642-7
28.
Mackolil
,
J.
, and
Mahanthesh
,
B.
,
2021
, “
Inclined Magnetic Field and Nanoparticle Aggregation Effects on Thermal Marangoni Convection in Nanoliquid: A Sensitivity Analysis
,”
Chin. J. Phys.
,
69
(
3
), pp.
24
37
.10.1016/j.cjph.2020.11.006
29.
Rana
,
P.
,
Mahanthesh
,
B.
,
Mackolil
,
J.
, and
Al-Kouz
,
W.
,
2021
, “
Nanofluid Flow Past a Vertical Plate With Nanoparticle Aggregation Kinematics, Thermal Slip and Significant Buoyancy Force Effects Using Modified Buongiorno Model
,”
Waves Random Complex Media
, epub, pp.
1
25
.10.1080/17455030.2021.1977416
30.
Yacob
,
N. A.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Falkner-Skan Problem for a Static or Moving Wedge in Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
2
), pp.
133
139
.10.1016/j.ijthermalsci.2010.10.008
You do not currently have access to this content.