Abstract

The aim of this work is to optimize the drying process through the reduction of energy consumption and the improvement of the dried product quality using tempering or intermittent drying. The effectiveness of intermittent drying was evaluated by the determination of the sensible, latent, and total energies necessary to perform the drying process. The obtained results show that tempering drying is more effective than continuous drying. This effectiveness was evaluated by the energy consumption. A reduction of energy consumption varying from 13% to 67% was achieved. The drying time, energy consumption, and product quality were improved when using temporary drying. The decrease of the gradient of moisture content in the material during the period of no heating is considered as the main factor that increases the rate of moisture removal when the heating is resumed.

References

1.
Golmohammadi
,
M.
,
Assar
,
M.
,
Rajabi-Hamaneh
,
M.
, and
Hashemi
,
S. J.
,
2015
, “
Energy Efficiency Investigation of Intermittent Paddy Rice Dryer: Modeling and Experimental Study
,”
Food Bioprod. Process.
,
94
, pp.
275
283
.10.1016/j.fbp.2014.03.004
2.
Mujumdar
,
A. S.
,
2014
,
Handbook of Industrial Drying
,
CRC Press
,
Boca Raton, FL
.
3.
Pham
,
N. D.
,
Khan
,
M. I. H.
, and
Karim
,
M. A.
,
2020
, “
A Mathematical Model for Predicting the Transport Process and Quality Changes During Intermittent Microwave Convective Drying
,”
Food Chem.
,
325
, p.
126932
.10.1016/j.foodchem.2020.126932
4.
Khan
,
M. I. H.
,
Kumar
,
C.
,
Joardder
,
M. U. H.
, and
Karim
,
M. A.
,
2017
, “
Determination of Appropriate Effective Diffusivity for Different Food Materials
,”
Drying Technol.
,
35
(
3
), pp.
335
346
.10.1080/07373937.2016.1170700
5.
Majdi
,
H.
, and
Esfahani
,
J. A.
,
2018
, “
Energy Consumption and Drying Time Optimization of Convective Drying for Performance Improvement: Response Surface Methodology and Lattice Boltzmann Method
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
102009
.https://doi.org/10.1115/1.4040259
6.
da Silva
,
W. P.
,
da Silva e Silva
,
C. M. D. P.
,
de Farias Aires
,
J. E.
, and
da Silva Junior
,
A. F.
,
2014
, “
Osmotic Dehydration and Convective Drying of Coconut Slices: Experimental Determination and Description Using One-Dimensional Diffusion Model
,”
J. Saudi Soc. Agric. Sci.
,
13
(
2
), pp.
162
168
.10.1016/j.jssas.2013.05.002
7.
Kowalski
,
S. J.
, and
Szadzińska
,
J.
,
2014
, “
Convective-Intermittent Drying of Cherries Preceded by Ultrasonic Assisted Osmotic Dehydration
,”
Chem. Eng. Process.
,
82
, pp.
65
70
.10.1016/j.cep.2014.05.006
8.
Pan
,
Y. K.
,
Zhao
,
L. J.
,
Dong
,
Z. X.
,
Mujumdar
,
A. S.
, and
Kudra
,
T.
,
1999
, “
Intermittent Drying of Carrot in a Vibrated Fluid Bed: Effect on Product Quality
,”
Drying Technol
,.,
17
(
10
), pp.
2323
2340
.10.1080/07373939908917686
9.
Jiang
,
Y.
,
Jin
,
X.
, and
Chen
,
X. D.
,
2022
, “
Characterization of Moisture Transfer During Intermittent Drying Process for Broccoli From LF-NMR Experiments
,”
Drying Technol.
,
40
(
1
), pp.
127
139
.10.1080/07373937.2020.1771725
10.
Brito
,
R. C.
,
Béttega
,
R.
, and
Freire
,
J. T.
,
2019
, “
Energy Analysis of Intermittent Drying in the Spouted Bed
,”
Drying Technol.
,
37
(
12
), pp.
1498
1510
.10.1080/07373937.2018.1512503
11.
Vorhauer
,
N.
,
Tretau
,
A.
,
Bück
,
A.
, and
Prat
,
M.
,
2019
, “
Microwave Drying of Wet Clay With Intermittent Heating
,”
Drying Technol.
,
37
(
5
), pp.
664
678
.10.1080/07373937.2018.1547740
12.
Hammouda
,
I.
, and
Mihoubi
,
D.
,
2014
, “
Comparative Numerical Study of Kaolin Clay With Three Drying Methods: Convective, Convective-Microwave and Convective Infrared Modes
,”
Energy Convers. Manage.
,
87
, pp.
832
839
.10.1016/j.enconman.2014.07.085
13.
Itaya
,
Y.
,
Uchiyama
,
S.
,
Hatano
,
S.
, and
Mori
,
S.
,
2005
, “
Drying Enhancement of Clay Slab by Microwave Heating
,”
Drying Technol.
,
23
(
6
), pp.
1243
1255
.10.1081/DRT-200059487
14.
Manel
,
B. A.
,
Mihoubi
,
D.
,
Jalila
,
S.
, and
Ahmed
,
B.
,
2014
, “
Strain-Stress Formation During Stationary and Intermittent Drying of Deformable Media
,”
Drying Technol.
,
32
(
10
), pp.
1245
1255
.10.1080/07373937.2014.899246
15.
Kowalski
,
S. J.
, and
PawŁowski
,
A.
,
2011
, “
Intermittent Drying of Initially Saturated Porous Materials
,”
Chem. Eng. Sci.
,
66
(
9
), pp.
1893
1905
.10.1016/j.ces.2011.01.044
16.
Kowalski
,
S. J.
, and
Pawłowski
,
A.
,
2010
, “
Drying of Wet Materials in Intermittent Conditions
,”
Drying Technol.
,
28
(
5
), pp.
636
643
.10.1080/07373931003788718
17.
Kowalski
,
S. J.
, and
Pawłowski
,
A.
,
2010
, “
Drying of Wood With Air of Variable Parameters
,”
Chem. Process Eng.
,
31
(
1
), pp.
135
147
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGP K-2714-0268
18.
Kowalski
,
S. J.
, and
Szadzińska
,
J.
,
2012
, “
Non-Stationary Drying of Ceramic-Like Materials Controlled Through Acoustic Emission Method
,”
Heat Mass Transfer
,
48
(
12
), pp.
2023
2032
.10.1007/s00231-012-1042-6
19.
Kumar
,
C.
,
Karim
,
M. A.
, and
Joardder
,
M. U. H.
,
2014
, “
Intermittent Drying of Food Products: A Critical Review
,”
J. Food Eng.
,
121
(
1
), pp.
48
57
.10.1016/j.jfoodeng.2013.08.014
20.
Chua
,
K. J.
,
Mujumdar
,
A. S.
, and
Chou
,
S. K.
,
2003
, “
Intermittent Drying of Bioproducts - An Overview
,”
Bioresour. Technol.
,
90
(
3
), pp.
285
295
.10.1016/S0960-8524(03)00133-0
21.
Franco
,
C. M. R.
,
de Lima
,
A. G. B.
,
Farias
,
V. S. O.
, and
da Silva
,
W. P.
,
2020
, “
Modeling and Experimentation of Continuous and Intermittent Drying of Rough Rice Grains
,”
Heat Mass Transfer
,
56
(
3
), pp.
1003
1014
.10.1007/s00231-019-02773-0
22.
Heydari
,
M.
,
Khalili
,
K.
, and
Ahmadi-Brooghani
,
Y.
,
2020
, “
Influence of Convective Intermittent Drying Schemes on Drying Induced Stress–Strain of a 3D Clay Object
,”
AiChe J.
,
66
(
11
), p. e16985.10.1002/aic.16985
23.
Yu
,
X.-L.
,
Zielinska
,
M.
,
Ju
,
H.-Y.
,
Mujumdar
,
A. S.
,
Duan
,
X.
,
Gao
,
Z.-J.
, and
Xiao
,
H.-W.
,
2020
, “
Multistage Relative Humidity Control Strategy Enhances Energy and Exergy Efficiency of Convective Drying of Carrot Cubes
,”
Int. J. Heat Mass Transfer
,
149
, p.
119231
.10.1016/j.ijheatmasstransfer.2019.119231
24.
Defraeye
,
T.
,
2016
, “
Towards More Efficient Intermittent Drying of Fruit: Insights From Combined Hygrothermal-Quality Modelling
,”
Innov. Food Sci. Emer. Technol.
,
38
, pp.
262
271
.10.1016/j.ifset.2016.10.003
25.
Kowalski
,
S. J.
, and
Pawlowski
,
A.
,
2011
, “
Intermittent Drying: Energy Expenditure and Product Quality
,”
Chem. Eng. Technol.
,
34
(
7
), pp.
1123
1129
.10.1002/ceat.201100025
26.
Mihoubi
,
D.
, and
Bellagi
,
A.
,
2008
, “
Two-Dimensional Heat and Mass Transfer During Drying of Deformable Media
,”
Appl. Math. Model.
,
32
(
3
), pp.
303
314
.10.1016/j.apm.2006.12.003
27.
Zagrouba
,
F.
,
Mihoubi
,
D.
, and
Bellagi
,
A.
,
2002
, “
Drying of Clay. II: Rheological Modelisation and Simulation of Physical Phenomena
,”
Drying Technol.
,
20
(
10
), pp.
1895
1917
.10.1081/DRT-120015575
28.
Mihoubi
,
D.
,
Zagrouba
,
F.
,
Vaxelaire
,
J.
,
Bellagi
,
A.
, and
Roques
,
M.
,
2004
, “
Transfer Phenomena During the Drying of a Shrinkable Product: Modelling and Simulations
,”
Drying Technol.
,
22
(
1–2
), pp.
91
109
.10.1081/DRT-120028216
29.
Fakhfakh
,
R.
,
Mihoubi
,
D.
, and
Kechaou
,
N.
,
2018
, “
Numerical Modeling Assessment of Mechanical Effect in Bovine Leather Drying Process
,”
Drying Technol.
,
36
(
11
), pp.
1313
1325
.10.1080/07373937.2017.1402023
30.
Mihoubi
,
D.
, and
Bellagi
,
A.
,
2009
, “
Stress Generated During Drying of Saturated Porous Media
,”
Transp. Porous Media
,
80
(
3
), pp.
519
536
.10.1007/s11242-009-9378-1
31.
Whitaker
,
S.
,
1972
,
Fundamental Principles of Heat Transfer
, Pergamon, Oxford, UK.
32.
Hasatani
,
M.
,
Itaya
,
Y.
, and
Hayakawa
,
K.-i.
,
1992
, “
Fundamental Study on Shrinkage of Formed Clay During Drying. Viscoelastic Strain-Stress and Heat/Moisture Transfer
,”
Drying Technol.
,
10
(
4
), pp.
1013
1036
.10.1080/07373939208916493
33.
Mihoubi
,
D.
,
2004
, “Deshydratation d'argiles par compression et séchage. Aspects de modélisation et de simulation,” Ph. D. Thesis,
Université de Pau et des Pays de l'Adour
, France.
34.
Banaszak
,
J.
, and
Kowalski
,
S. J.
,
2002
, “
Drying Induced Stresses Estimated on the Base of Elastic and Viscoelastic Models
,”
Chem. Eng. J.
,
86
(
1–2
), pp.
139
143
.10.1016/S1385-8947(01)00281-9
35.
Timoumi
,
S.
,
Mihoubi
,
D.
, and
Zagrouba
,
F.
,
2019
, “
Modelling of Moisture Content, β-Carotene and Deformation Variation During Drying of Carrot
,”
Int. J. Food Eng.
,
15
(
7
), p. 20180155.10.1515/ijfe-2018-0155
36.
Hammouda
,
I.
, and
Mihoubi
,
D.
,
2014
, “
Modeling of Thermo-Hydro-Viscoelastic Behavior of a Partially Saturated Ceramic Material During Drying
,”
Drying Technol.
,
32
(
10
), pp.
1219
1230
.10.1080/07373937.2014.895009
37.
Hammouda
,
I.
, and
Mihoubi
,
D.
,
2014
, “
Modelling of Drying Induced Stress of Clay: Elastic and Viscoelastic Behaviours
,”
Mech. Time-Depend. Mater.
,
18
(
1
), pp.
97
111
.10.1007/s11043-013-9216-2
38.
Mihoubi
,
D.
, and
Bellagi
,
A.
,
2009
, “
Drying-Induced Stresses During Convective and Combined Microwave and Convective Drying of Saturated Porous Media
,”
Drying Technol.
,
27
(
7–8
), pp.
851
856
.10.1080/07373930902988122
39.
da Silva
,
W. P.
,
Rodrigues
,
A. F.
,
Silva
,
CMDPSe.
, and
Gomes
,
J. P.
,
2017
, “
Numerical Approach to Describe Continuous and Intermittent Drying Including the Tempering Period: Kinetics and Spatial Distribution of Moisture
,”
Drying Technol.
,
35
(
3
), pp.
272
280
.10.1080/07373937.2016.1172316
40.
Zhu
,
Z.
,
Yang
,
Z.
, and
Wang
,
F.
,
2016
, “
Experimental Research on Intermittent Heat Pump Drying With Constant and Time-Variant Intermittency Ratio
,”
Drying Technol.
,
34
(
13
), pp.
1630
1640
.10.1080/07373937.2016.1138966
41.
da Silva
,
W. P.
,
Galvão
,
I. B.
,
e Silva
,
C. M. D. P. S.
,
de Farias Aires
,
J. E.
, and
de Figueirêdo
,
R. M. F.
,
2020
, “
Empirical Model for Describing Continuous and Intermittent Drying Kinetics of Apple Pieces
,”
Heat Mass Transfer
,
56
(
4
), pp.
1263
1274
.10.1007/s00231-019-02785-w
42.
Huinink
,
H. P.
,
Pel
,
L.
,
Michels
,
M. A. J.
, and
Prat
,
M.
,
2002
, “
Drying Processes in the Presence of Temperature Gradients –Pore-Scale Modelling
,”
Eur. Phys. J. E
,
9
(
S1
), pp.
487
498
.10.1140/epje/i2002-10106-1
43.
Zhang
,
Y.
,
Zhu
,
H.
,
Wu
,
W.
,
Li
,
J.
, and
Yin
,
L.
,
2012
, “
Internal Stress Analysis on Corn Grain During Vacuum Drying
,”
Sensor Lett.
,
10
(
1
), pp.
574
579
.10.1166/sl.2012.1839
44.
Zhao
,
Y.
,
Huang
,
K.
,
Chen
,
X. F.
,
Wang
,
F. H.
,
Chen
,
P. X.
,
Tu
,
G.
, and
Yang
,
D. Y.
,
2018
, “
Tempering-Drying Simulation and Experimental Analysis of Corn Kernel
,”
Int. J. Food Eng.
,
14
(
1
), p. 20170217.10.1515/ijfe-2017-0217
45.
Li
,
Y. B.
,
Cao
,
C. W.
,
Yu
,
Q. L.
, and
Zhong
,
Q. X.
,
1998
, “
Study on Rough Rice Fissuring During Intermittent Drying
,”
Drying Technol.
, 17(
9
), pp.
1779
1793
.10.1080/07373939908917652
46.
Filippin
,
A. P.
,
Filho
,
L. M.
,
Fadel
,
V.
, and
Mauro
,
M. A.
,
2018
, “
Thermal Intermittent Drying of Apples and Its Effects on Energy Consumption
,”
Drying Technol.
,
36
(
14
), pp.
1662
1677
.10.1080/07373937.2017.1421549
47.
Thakur
,
A. K.
, and
Gupta
,
A. K.
,
2006
, “
Two Stage Drying of High Moisture Paddy With Intervening Rest Period
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
3069
3083
.10.1016/j.enconman.2006.03.008
48.
Silva
,
V.
,
Costa
,
J. J.
,
Figueiredo
,
A. R.
,
Nunes
,
J.
,
Nunes
,
C.
,
Ribeiro
,
T. I. B.
, and
Pereira
,
B.
,
2016
, “
Study of Three-Stage Intermittent Drying of Pears Considering Shrinkage and Variable Diffusion Coefficient
,”
J. Food Eng.
,
180
, pp.
77
86
.10.1016/j.jfoodeng.2016.02.013
You do not currently have access to this content.