Abstract

In recent years, the interaction of unrestricted particles with dispersed multiphase flows has been linked to a number of important engineering applications. Among these applications, the novel idea of immersion-cooled phosphor particles, which has the potential of significantly increasing the thermal limits of phosphor converted white light-emitting diode (LEDs) (Pc-WLEDs), has yet to be thoroughly investigated. With this objective, this research utilizes the discrete phase modeling (DPM) technique for the characterization of phosphor location and movements within a buoyancy-driven flow, which is the determining factor in the optical behavior of the newly proposed Pc-WLED configuration. Two-phase flow analysis is conducted to characterize particle movement. Heat transfer, flow, and energy paths of self-heating phosphor particles are extracted, and the influence of particle sizes is analyzed in detail. The results show that with immersion liquid cooling, the highest phosphor particle temperature is recorded to be under 420 K, while larger size particles introduce higher heat transfer rates to the Pc-WLED package for the same number of particles. Moreover, depending on the particle size and position, individual phosphor particles can follow a different trajectory that can affect the probability of obtaining white light emission.

References

1.
Pust
,
P.
,
Schmidt
,
P. J.
, and
Schnick
,
W.
,
2015
, “
A Revolution in Lighting
,”
Nat. Mater.
,
14
(
5
), pp.
454
458
.10.1038/nmat4270
2.
Rahman
,
T.
,
Raza
,
S.
,
Saeed
,
M.
, and
Jameel
,
S.
,
2019
, “
An Emerging White LED Technology and Associated Thermal Issues – A Review
,”
J. Appl. Emerg. Sci.
,
9
(
2
), pp.
106
120
.10.36785/jaes.92301
3.
Xia
,
Z.
, and
Liu
,
Q.
,
2016
, “
Progress in Discovery and Structural Design of Color Conversion Phosphors for LEDs
,”
Prog. Mater. Sci.
,
84
, pp.
59
117
.10.1016/j.pmatsci.2016.09.007
4.
Mueller-Mach
,
R.
,
Mueller
,
G. O.
,
Krames
,
M. R.
, and
Trottier
,
T.
,
2002
, “
High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides
,”
IEEE J. Sel. Top. Quant. Electron.
,
8
(
2
), pp.
339
345
.10.1109/2944.999189
5.
Schubert
,
E. F.
,
2006
,
Light-Emitting Diodes
, Cambridge University Press, Cambridge, UK.
6.
Kim
,
J. K.
,
Luo
,
H.
,
Schubert
,
E. F.
,
Cho
,
J.
,
Sone
,
C.
, and
Park
,
Y.
,
2005
, “
Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup
,”
Jpn. J. Appl. Phys.
,
44
(
21
), pp.
L649
L651
.10.1143/JJAP.44.L649
7.
Rao
,
H.
,
Wang
,
W.
,
Wan
,
X.
,
Zhou
,
L.
,
Liao
,
J.
,
Zhou
,
D.
,
Lei
,
Q.
, and
Wang
,
X.
,
2013
, “
An Improved Slurry Method of Self-Adaptive Phosphor Coating for White Pc-LED Packaging
,”
IEEE/OSA J. Disp. Technol.
,
9
(
6
), pp.
453
458
.10.1109/JDT.2012.2226017
8.
Sommer
,
C.
,
Wenzl
,
F. P.
,
Reil
,
F.
,
Krenn
,
J. R.
,
Pachler
,
P.
,
Tasch
,
S.
, and
Hartmann
,
P.
,
2010
, “
A Comprehensive Study on the Parameters Effecting Color Conversion in Phosphor Converted White Light Emitting Diodes
,”
SPIE Paper No. 7784.
9.
Arik
,
M.
,
Weaver
,
S.
,
Becker
,
C.
,
Hsing
,
M.
, and
Srivastava
,
A.
,
2003
, “
Effects of Localized Heat Generations Due to the Color Conversion in Phosphor Particles and Layers of High Brightness Light Emitting Diode
,”
ASME
Paper No. IPACK2003-35015.10.1115/IPACK2003-35015
10.
Luo
,
X.
,
Fu
,
X.
,
Chen
,
F.
, and
Zheng
,
H.
,
2013
, “
Phosphor Self-Heating in Phosphor Converted Light Emitting Diode Packaging
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
276
281
.10.1016/j.ijheatmasstransfer.2012.11.056
11.
Qiao
,
J.
,
Zhao
,
J.
,
Liu
,
Q.
, and
Xia
,
Z.
,
2019
, “
Recent Advances in Solid-State LED Phosphors With Thermally Stable Luminescence
,”
J. Rare Earths
,
37
(
6
), pp.
565
572
.10.1016/j.jre.2018.11.001
12.
Ma
,
Y.
,
Lan
,
W.
,
Xie
,
B.
,
Hu
,
R.
, and
Luo
,
X.
,
2018
, “
An Optical-Thermal Model for Laser-Excited Remote Phosphor With Thermal Quenching
,”
Int. J. Heat Mass Transfer
,
116
, pp.
694
702
.10.1016/j.ijheatmasstransfer.2017.09.066
13.
Bachmann
,
V.
,
Ronda
,
C.
, and
Meijerink
,
A.
,
2009
, “
Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce
,”
Chem. Mater.
,
21
(
10
), pp.
2077
2084
.10.1021/cm8030768
14.
Zachau
,
M.
,
Becker
,
D.
,
Berben
,
D.
,
Fiedler
,
T.
,
Jermann
,
F.
,
Zwaschka
,
F.
,
Gmbh
,
O.
, and
Straße
,
H.
,
2008
, “
Phosphors for Solid State Lighting
,”
SPIE Paper No. 6910.
15.
Yan
,
B.
,
Tran
,
N. T.
,
You
,
J.
, and
Shi
,
F. G.
,
2011
, “
Can Junction Temperature Alone Characterize Thermal Performance of White LED Emitters?
,”
IEEE Photonics Technol. Lett.
,
23
(
9
), pp.
555
557
.10.1109/LPT.2011.2115997
16.
Hwang
,
J. H.
,
Kim
,
Y. D.
,
Kim
,
J. W.
,
Jung
,
S. J.
,
Kwon
,
H. K.
, and
Oh
,
T. H.
,
2010
, “
Study on the Effect of the Relative Position of the Phosphor Layer in the LED Package on the High Power LED Lifetime
,”
Phys. Status Solidi Curr. Top. Solid State Phys.
,
7
(
7–8
), pp.
2157
2161
.10.1002/pssc.200983493
17.
Yan
,
B.
,
You
,
J. P.
,
Tran
,
N. T.
, and
Shi
,
F. G.
,
2013
, “
Influence of Phosphor Configuration on Thermal Performance of High Power White LED Array
,”
IEEE International Symposium on Advanced Packaging Materials
,
IEEE
, Irvine, CA, Feb. 27–Mar. 1, pp.
274
289
.
18.
Arik
,
M.
,
Becker
,
C. A.
,
Weaver
,
S. E.
, and
Petroski
,
J.
,
2004
, “
Thermal Management of LEDs: Package to System
,”
SPIE Paper No. 5187, Third International Conference on Solid State Lighting.
19.
Cengiz
,
C.
,
Azarifar
,
M.
, and
Arık
,
M.
,
2021
, “
Thermal and Optical Characterization of White and Blue Multi-Chip LED Light Engines
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM
,
IEEE
, San Diego, CA, June 1–4, pp.
285
293
.
20.
Ceren
,
A.
,
Arik
,
M.
, and
Mehmet
,
C.
,
2022
, “
Dynamic Opto-Electro-Thermal Characterization of Solid State Lighting Devices: Measuring the Power Conversion Efficiency at High Current Densities
,”
J. Phys. D. Appl. Phys.
, 55 395103.
21.
Hu
,
R.
,
Ã
,
X. L.
, and
Zheng
,
H.
,
2012
, “
Hotspot Location Shift in the High-Power Phosphor-Converted White Light-Emitting Diode Packages Hotspot Location Shift in the High-Power Phosphor-Converted White Light-Emitting Diode Packages
,”
Jpn. J. Appl. Phys.
,
51
(
9S2:09MK05
), p.
09MK05
.10.7567/JJAP.51.09MK05
22.
Nicolics
,
J.
,
Fulmek
,
P.
,
Nemitz
,
W.
, and
Wenzl
,
F. P.
,
2018
, “
Analysis of the Local Temperature Distribution in Color Conversion Elements of Phosphor Converted Light-Emitting Diodes
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1096
1107
.10.1016/j.ijheatmasstransfer.2017.09.088
23.
Ma
,
Y.
, and
Luo
,
X.
,
2019
, “
Two-Dimensional Axisymmetric Opto-Thermal Phosphor Modeling Based on Fluorescent Radiative Transfer Equation
,”
J. Lumin.
,
214
(
116589
), p.
116589
.10.1016/j.jlumin.2019.116589
24.
Arik
,
M.
,
Utturkar
,
Y.
, and
Weaver
,
S.
,
2010
, “
Immersion Cooling of Light Emitting Diodes
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
, Las Vegas, June 2–5, pp.
1
8
.
25.
Xie
,
B.
,
Hu
,
R.
, and
Luo
,
X.
,
2021
, “
Manipulating Heat Transport of Photoluminescent Composites in LEDs/LDs
,”
J. Appl. Phys.
,
130
(
7
), p.
70906
.10.1063/5.0056228
26.
Tamdogan
,
E.
, and
Arik
,
M.
,
2015
, “
Natural Convection Immersion Cooling With Enhanced Optical Performance of Light-Emitting Diode Systems
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
041006
.10.1115/1.4031480
27.
Kahvecioglu
,
H. I.
,
Tamdogan
,
E.
, and
Arik
,
M.
,
2018
, “
Investigation of Combined Optical and Thermal Effects on Phosphor Converted Light-Emitting Diodes With Liquid Immersion Cooling
,”
Opt. Eng.
,
57
(
05
), p.
1
.10.1117/1.OE.57.5.055101
28.
Azarifar
,
M.
,
Cengiz
,
C.
, and
Arik
,
M.
,
2022
, “
Thermal and Optical Performance Characterization of Bare and Phosphor Converted LEDs Through Package Level Immersion Cooling
,”
Int. J. Heat Mass Transfer
,
189
, p.
122607
.10.1016/j.ijheatmasstransfer.2022.122607
29.
Kang
,
D.-Y.
,
Wu
,
E.
, and
Wang
,
D.-M.
,
2006
, “
Modeling White Light-Emitting Diodes With Phosphor Layers
,”
Appl. Phys. Lett.
,
89
(
23
), p.
231102
.10.1063/1.2400111
30.
Dal Lago
,
M.
,
Meneghini
,
M.
,
Trivellin
,
N.
,
Mura
,
G.
,
Vanzi
,
M.
,
Meneghesso
,
G.
, and
Zanoni
,
E.
,
2012
, “
Phosphors for LED-Based Light Sources: Thermal Properties and Reliability Issues
,”
Microelectron. Reliab.
,
52
(
9–10
), pp.
2164
2167
.10.1016/j.microrel.2012.06.036
31.
Azarifar
,
M.
,
Cengiz
,
C.
, and
Arik
,
M.
,
2021
, “
Particle Based Investigation of Self-Heating Effect of Phosphor Particles in Phosphor Converted Light Emitting Diodes
,”
J. Lumin.
,
231
, p.
117782
.10.1016/j.jlumin.2020.117782
32.
Qian
,
X.
,
Zou
,
J.
,
Shi
,
M.
,
Yang
,
B.
,
Li
,
Y.
,
Wang
,
Z.
,
Liu
,
Y.
,
Liu
,
Z.
, and
Zheng
,
F.
,
2019
, “
Development of Optical-Thermal Coupled Model for Phosphor-Converted LEDs
,”
Front. Optoelectron.
,
12
(
3
), pp.
249
267
.10.1007/s12200-018-0857-2
33.
Cengiz
,
C.
,
Muslu
,
A. M.
,
Arik
,
M.
, and
Dogruoz
,
B.
,
2020
, “
Enhanced Thermal Performance of High Flux LED Systems With Two-Phase Immersion Cooling
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
IEEE
, Orlando, FL, July 21–23, pp.
196
206
.
34.
ANSYS
,
2001
,
Chapter 19. Discrete Phase Models
,
ANSYS
Inc. pp.
1
170
.
35.
Effendi
,
N. S.
, and
Kim
,
K. J.
,
2017
, “
Orientation Effects on Natural Convective Performance of Hybrid Fin Heat Sinks
,”
Appl. Therm. Eng.
,
123
, pp.
527
536
.10.1016/j.applthermaleng.2017.05.134
36.
Garoosi
,
F.
,
Shakibaeinia
,
A.
, and
Bagheri
,
G.
,
2015
, “
Eulerian–Lagrangian Modeling of Solid Particle Behavior in a Square Cavity With Several Pairs of Heaters and Coolers Inside
,”
Powder Technol.
,
280
, pp.
239
255
.10.1016/j.powtec.2015.04.048
37.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2018
, “
Discrete Phase Numerical Model and Experimental Study of Hybrid Nanofluid Heat Transfer and Pressure Drop in Plate Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
262
273
.10.1016/j.icheatmasstransfer.2017.12.020
38.
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2007
, “
Numerical Investigation of Forced Convection of Nanofluids in Circular Tubes
,”
Heat Transfer Summer Conference
, Vancouver, BC, Canada, July 8–12, pp.
839
848
.
39.
Eslamian
,
M.
, and
Saghir
,
M. Z.
,
2013
, “
Novel Thermophoretic Particle Separators: Numerical Analysis and Simulation
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
527
534
.10.1016/j.applthermaleng.2013.06.020
40.
Kharoua
,
N.
,
AlShehhi
,
M.
, and
Khezzar
,
L.
,
2015
, “
Prediction of Black Powder Distribution in Junctions Using the Discrete Phase Model
,”
Powder Technol.
,
286
, pp.
202
211
.10.1016/j.powtec.2015.07.045
41.
Xu
,
A.
,
Tao
,
S.
,
Shi
,
L.
, and
Xi
,
H.-D.
,
2020
, “
Transport and Deposition of Dilute Microparticles in Turbulent Thermal Convection
,”
Phys. Fluids
,
32
(
8
), p.
83301
.10.1063/5.0018804
42.
de Vicente
,
J.
, and
Ramírez
,
J.
,
2007
, “
Effect of Friction Between Particles in the Dynamic Response of Model Magnetic Structures
,”
J. Colloid Interface Sci.
,
316
(
2
), pp.
867
876
.10.1016/j.jcis.2007.08.022
43.
Nandy
,
K.
,
Chaudhuri
,
S.
,
Ganguly
,
R.
, and
Puri
,
I. K.
,
2008
, “
Analytical Model for the Magnetophoretic Capture of Magnetic Microspheres in Microfluidic Devices
,”
J. Magn. Magn. Mater.
,
320
(
7
), pp.
1398
1405
.10.1016/j.jmmm.2007.11.024
44.
Sera
,
T.
,
Uesugi
,
K.
,
Yagi
,
N.
, and
Yokota
,
H.
,
2015
, “
Numerical Simulation of Airflow and Microparticle Deposition in a Synchrotron Micro-CT-Based Pulmonary Acinus Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
13
), pp.
1427
1435
.10.1080/10255842.2014.915030
45.
Davis
,
R. H.
,
1992
, “
Modeling of Fouling of Crossflow Microfiltration Membranes
,”
Sep. Purif. Methods
,
21
(
2
), pp.
75
126
.10.1080/03602549208021420
46.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
02
), pp.
193
208
.10.1017/S0022112072001806
47.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
48.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows *
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.10.1007/BF00936835
49.
Cloete
,
S.
,
Johansen
,
S. T.
,
M
,
B.
,
B
,
P.
, and
Amini
,
S.
,
2010
, “
Evaluation of a Lagrangian Discrete Phase Modeling Approach for Resolving Cluster Formation in CFB Risers
,”
Seventh International Conference on Multiphase Flow
, Tampa, FL, May 30–June 4.https://dc.engconfintl.org/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1029&context=cfb10
50.
Muslu
,
A. M.
,
Ozluk
,
B.
, and
Arik
,
M.
,
2021
, “
An Investigation Into the Optothermal Behavior of a High Power Red Light Emitting Diode: Impact of an Optical Path
,”
ASME J. Electron. Packag.
,
143
, p.
011007
.10.1115/1.4047381
51.
3M,
2020
, “3MTM NovecTM 7000 Engineered Fluid,” St. Paul, MN, accessed May 2021, https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf
52.
Arik
,
M.
,
2015
, “
Effect of Chip and Bonding Defects on the Junction Temperatures of High-Brightness Light-Emitting Diodes
,”
Opt. Eng.
,
44
(
11
), p.
111305
.10.1117/1.2130127
53.
Shiina
,
Y.
,
Fujimura
,
K.
,
Kunugi
,
T.
, and
Akino
,
N.
,
1994
, “
Natural Convection in a Hemispherical Enclosure Heated From Below
,”
Int. J. Heat Mass Transfer
,
37
(
11
), pp.
1605
1617
.10.1016/0017-9310(94)90176-7
54.
Ranz
,
W. E.
, and
Marshall
,
W.
,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
55.
Ranz
,
W. E.
, and
Marshall
,
W.
,
1952
, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
56.
Tamdoğan
,
E.
,
2017
,
Immersion Cooling of Suspended and Coated Nano-Phosphor Particles for Extending the Limits of Optical Extraction of Light Emitting Diodes
,
Ozyegin University
, Istanbul, Turkey.
57.
Xu
,
Z.
,
Zhang
,
L.
,
Wilke
,
K.
, and
Wang
,
E. N.
,
2018
, “
Multiscale Dynamic Growth and Energy Transport of Droplets During Condensation
,”
Langmuir
,
34
(
30
), pp.
9085
9095
.10.1021/acs.langmuir.8b01450
You do not currently have access to this content.