Abstract

Accurate estimation of critical heat flux (CHF) is essential in determining the maximum heat a boiling system is capable of extracting. This study presents a theoretical model for predicting CHF over microchannel, unidirectionally roughened, and coated surfaces. The researchers started developing theoretical models on this phenomenon considering the hydrodynamic instability. However, effects of parameters like capillarity, wettability, wicking ability, and surface geometry have been considered in the theoretical models developed in recent years. In the present work, a theoretical model has been developed to predict the CHF for pool boiling applications by combining these factors. The capillary effect causes the liquid microlayer beneath the evaporating bubble to occupy the dry spot and thus delay CHF. Hence, in this model, the capillary force has been added along with the momentum, hydrostatic, and surface tension forces acting at the liquid–vapor interface on the evaporating vapor bubble. The roughness factor has also been factored in with the contact angle to incorporate the effect of change in contact area of the solid–liquid interface in rough surfaces. The results from the model agree with the results of previously conducted experimental studies with 20% accuracy. The correlation is primarily derived for microchannels and has also been extended to randomly roughened surfaces with micro/nanostructures.

References

1.
Murshed
,
S. S.
,
Nieto de Castro
,
C. A.
,
Lourenço
,
M. J. V.
,
Lopes
,
M. L. M.
, and
Santos
,
F. J. V.
,
2011
, “
A Review of Boiling and Convective Heat Transfer With Nanofluids
,”
Renew. Sustain. Energy Rev.
,
15
(
5
), pp.
2342
2354
.10.1016/j.rser.2011.02.016
2.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2020
, “
A Review on Heat Transfer Enhancement With Nanofluids
,”
J. Enhanc. Heat Transfer
,
27
(
1
), pp.
1
70
.10.1615/JEnhHeatTransf.2019031575
3.
Kamel
,
M. S.
,
Lezsovits
,
F.
,
Hussein
,
A. M.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2018
, “
Latest Developments in Boiling Critical Heat Flux Using Nanofluids: A Concise Review
,”
Int. Commun. Heat Mass Transfer
,
98
(
September
), pp.
59
66
.10.1016/j.icheatmasstransfer.2018.08.009
4.
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancementa – A Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.10.1080/01457632.2011.548267
5.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.10.1016/j.expthermflusci.2014.12.016
6.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
7.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
8.
Takata
,
Y.
,
Hidaka
,
S.
,
Cao
,
J. M.
,
Nakamura
,
T.
,
Yamamoto
,
H.
,
Masuda
,
M.
, and
Ito
,
T.
,
2005
, “
Effect of Surface Wettability on Boiling and Evaporation
,”
Energy
,
30
(
2–4
), pp.
209
220
.10.1016/j.energy.2004.05.004
9.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
How Does Surface Wettability Influence Nucleate Boiling?
,”
Comptes Rendus Mécanique
,
337
(
5
), pp.
251
259
.10.1016/j.crme.2009.06.032
10.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
11.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiph. Flow
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
12.
Yao
,
Z.
,
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
13.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
14.
Zuber
,
N.
,
1959
, Hydrodynamic Aspects Of Boiling Heat Transfer, Ph.D. thesis, Research Laboratory, Los Angeles and Ramo-Wooldridge Corporation, University of California, Los Angeles, CA.
15.
Lienhard
,
H.
, and
Dhir
,
K.
,
1973
, “
Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes
,” NASA CR-2270, Contract No. NGL 18-001-035.
16.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.10.1016/0017-9310(83)90043-1
17.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer- Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
18.
Chu
,
K. H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
19.
Chu
,
K. H.
,
Joung
,
Y. S.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.10.1063/1.4801811
20.
Kim
,
B. S.
,
Lee
,
H.
,
Shin
,
S.
,
Choi
,
G.
, and
Cho
,
H. H.
,
2014
, “
Interfacial Wicking Dynamics and Its Impact on Critical Heat Flux of Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191601
.10.1063/1.4901569
21.
Kim
,
S. H.
,
Lee
,
G. C.
,
Kang
,
J. Y.
,
Moriyama
,
K.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2015
, “
Boiling Heat Transfer and Critical Heat Flux Evaluation of the Pool Boiling on Micro Structured Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1140
1147
.10.1016/j.ijheatmasstransfer.2015.07.120
22.
Kim
,
J.
,
Jun
,
S.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.10.1016/j.ijheatmasstransfer.2016.05.067
23.
Li
,
R.
, and
Huang
,
Z.
,
2017
, “
A New CHF Model for Enhanced Pool Boiling Heat Transfer on Surfaces With Micro-Scale Roughness
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1084
1093
.10.1016/j.ijheatmasstransfer.2017.02.089
24.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
25.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2018
, “
Experimental Study of Pool Boiling Heat Transfer on Copper Surfaces With Cu-Al2O3 Nanocomposite Coatings
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
47
55
.10.1016/j.icheatmasstransfer.2018.07.004
26.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Cu-Al2O3 Nano-Composite Coating
,”
Exp. Heat Transfer
,
32
(
2
), pp.
133
158
.10.1080/08916152.2018.1485785
27.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
Effect of Two-Step Electrodeposited Cu–TiO 2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1781
1793
.10.1007/s10973-018-7805-7
28.
Leong
,
K. C.
,
Ho
,
J. Y.
, and
Wong
,
K. K.
,
2017
, “
A Critical Review of Pool and Flow Boiling Heat Transfer of Dielectric Fluids on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
112
, pp.
999
1019
.10.1016/j.applthermaleng.2016.10.138
29.
Quan
,
X.
,
Dong
,
L.
, and
Cheng
,
P.
,
2014
, “
A CHF Model for Saturated Pool Boiling on a Heated Surface With Micro/Nano-Scale Structures
,”
Int. J. Heat Mass Transfer
,
76
, pp.
452
458
.10.1016/j.ijheatmasstransfer.2014.04.037
30.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153107
.10.1063/1.2360892
31.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Colloid Chem.
,
53
(
9
), pp.
1466
1467
.10.1021/j150474a015
32.
Shaoxian
,
B.
, and
Shizhu
,
W.
,
2019
, “
Vapor-Condensed Gas Lubrication of Face Seals
,”
Gas Thermohydrodynamic Lubrication and Seals
, 1st ed., Elsevier, Academic Press, pp.
143
165
.
33.
Ku
,
T. C.
,
Ramsey
,
J. H.
, and
Clinton
,
W. C.
,
1968
, “
Calculation of Liquid Droplet Profiles From Closed-Form Solution of Young-Laplace Equation
,”
IBM J. Res. Dev.
,
12
(
6
), pp.
441
447
.10.1147/rd.126.0441
34.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
, “
Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
(
7
), p.
071908
.10.1063/1.3555430
35.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
(
1
), pp.
014104
4
.10.1063/1.2754644
36.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.10.1016/j.nucengdes.2010.07.006
37.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.10.1063/1.4833543
38.
Gouda
,
R. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2018
, “
Pool Boiling Heat Transfer Enhancement With Segmented Finned Microchannels Structured Surface
,”
Int. J. Heat Mass Transfer
,
127
, pp.
39
50
.10.1016/j.ijheatmasstransfer.2018.06.115
39.
Golobic
,
I.
, and
Ferjanc
,
K.
,
2000
, “
The Role of Enhanced Coated Surface in Pool Boiling CHF in FC-72
,”
Heat Mass Transfer
,
36
, pp.
525
531
.10.1007/s002310000118
40.
Ferjanc
,
K.
, and
Golobic
,
I.
,
2002
, “
Surface Effects on Pool Boiling CHF
,”
Exp. Therm. Fluid Sci.
,
25
, pp.
565
571
.10.1016/S0894-1777(01)00104-2
41.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.10.1016/j.ijheatmasstransfer.2014.08.063
42.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L. W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
43.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.10.1016/j.ijheatmasstransfer.2013.11.068
You do not currently have access to this content.