Abstract

In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered based on the rotational orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counterclockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW–CCW and CCW–CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for a better understanding of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies nonlinearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights into the sets of key parametric configurations that have a dominant influence on the thermal performance of the lid-driven cavity with double rotating cylinders.

References

1.
Khan
,
Z.
,
Khan
,
I.
,
Ullah
,
M.
, and
Tlili
,
I.
,
2018
, “
Effect of Thermal Radiation and Chemical Reaction on Non-Newtonian Fluid Through a Vertically Stretching Porous Plate With Uniform Suction
,”
Results Phys.
,
9
, pp.
1086
1095
.10.1016/j.rinp.2018.03.041
2.
Li
,
S.-N.
,
Zhang
,
H.-N.
,
Li
,
X.-B.
,
Li
,
Q.
,
Li
,
F.-C.
,
Qian
,
S.
, and
Joo
,
S. W.
,
2017
, “
Numerical Study on the Heat Transfer Performance of Non-Newtonian Fluid Flow in a Manifold Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
115
, pp.
1213
1225
.10.1016/j.applthermaleng.2016.10.047
3.
Khani
,
F.
,
Darvishi
,
M. T.
,
Subba
,
R.
, and
Gorla
,
R.
,
2011
, “
Analytical Investigation for Cooling Turbine Disks With a Non-Newtonian Viscoelastic Fluid
,”
Comput. Math. Appl.
,
61
(
7
), pp.
1728
1738
.10.1016/j.camwa.2011.01.040
4.
Yang
,
L.
, and
Du
,
K.
,
2020
, “
A Comprehensive Review on the Natural, Forced, and Mixed Convection of Non-Newtonian Fluids (Nanofluids) Inside Different Cavities
,”
J. Therm. Anal. Calorim.
,
140
(
5
), pp.
2033
2054
.10.1007/s10973-019-08987-y
5.
Hakeem
,
A. K. A.
,
Saranya
,
S.
, and
Ganga
,
B.
,
2017
, “
Comparative Study on Newtonian/Non-Newtonian Base Fluids With Magnetic/Non-Magnetic Nanoparticles Over a Flat Plate With Uniform Heat Flux
,”
J. Mol. Liq.
,
230
, pp.
445
452
.10.1016/j.molliq.2016.12.087
6.
Vahabzadeh Bozorg
,
M.
, and
Siavashi
,
M.
,
2019
, “
Two-Phase Mixed Convection Heat Transfer and Entropy Generation Analysis of a Non-Newtonian Nanofluid Inside a Cavity With Internal Rotating Heater and Cooler
,”
Int. J. Mech. Sci.
,
151
, pp.
842
857
.10.1016/j.ijmecsci.2018.12.036
7.
Mamatha Upadhya
,
S.
,
Mahesha
, and
Raju
,
C. S. K.
,
2018
, “
Unsteady Flow of Carreau Fluid in a Suspension of Dust and Graphene Nanoparticles With Cattaneo–Christov Heat Flux
,”
ASME J. Heat Transfer
,
140
(
9
), p.
092401
.10.1115/1.4039904
8.
Shah
,
Z.
,
Islam
,
S.
,
Ayaz
,
H.
, and
Khan
,
S.
,
2019
, “
Radiative Heat and Mass Transfer Analysis of Micropolar Nanofluid Flow of Casson Fluid Between Two Rotating Parallel Plates With Effects of Hall Current
,”
ASME J. Heat Transfer
,
141
(
2
), p.
022401
.10.1115/1.4040415
9.
Mendu
,
S. S.
, and
Das
,
P. K.
,
2021
, “
Lattice Boltzmann Modeling for Natural Convection in Power-Law Fluids Within a Partially Heated Square Enclosure
,”
ASME J. Heat Transfer
,
143
(
3
), p.
032601
.10.1115/1.4049472
10.
Li
,
B.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2012
, “
Comparison Between Thermal Conductivity Models on Heat Transfer in Power-Law Non-Newtonian Fluids
,”
ASME J. Heat Transfer
,
134
(
4
), p.
041702
.10.1115/1.4004020
11.
Xiao
,
J.
,
Wang
,
S.
,
Wang
,
S.
,
Dong
,
J.
,
Wen
,
J.
, and
Tu
,
J.
,
2021
, “
Numerical Study on Forced Convection Heat Transfer Across a Heated Circular Tube Based on Bingham Model With Thermally Dependent Viscosity
,”
ASME J. Heat Transfer
,
143
(
2
), p.
021801
.10.1115/1.4048828
12.
Hayat
,
T.
,
Iqbal
,
Z.
,
Mustafa
,
M.
, and
Obaidat
,
S.
,
2012
, “
Flow and Heat Transfer of Jeffrey Fluid Over a Continuously Moving Surface With a Parallel Free Stream
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011701
.10.1115/1.4004744
13.
Molla
,
M. M.
, and
Yao
,
L. S.
,
2009
, “
The Flow of Non-Newtonian Fluids on a Flat Plate With a Uniform Heat Flux
,”
ASME J. Heat Transfer
,
131
(
1
), p.
011702
.10.1115/1.2977610
14.
Moallemi
,
M. K.
, and
Jang
,
K. S.
,
1992
, “
Prandtl Number Effects on Laminar Mixed Convection Heat Transfer in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1881
1892
.10.1016/0017-9310(92)90191-T
15.
Bhattacharya
,
M.
,
Basak
,
T.
,
Oztop
,
H. F.
, and
Varol
,
Y.
,
2013
, “
Mixed Convection and Role of Multiple Solutions in Lid-Driven Trapezoidal Enclosures
,”
Int. J. Heat Mass Transfer
,
63
, pp.
366
388
.10.1016/j.ijheatmasstransfer.2013.03.028
16.
Chiu
,
H.
,
Jang
,
J.
, and
Yan
,
W.
,
2007
, “
Mixed Convection Heat Transfer in Horizontal Rectangular Ducts With Radiation Effects
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2874
2882
.10.1016/j.ijheatmasstransfer.2007.01.010
17.
Mamun
,
M. A. H.
,
Tanim
,
T. R.
,
Rahman
,
M. M.
,
Saidur
,
R.
, and
Nagata
,
S.
,
2011
, “
Analysis of Mixed Convection in a Lid Driven Trapezoidal Cavity
,”
Convection and Conduction Heat Transfer
, IntechOpen, UK, pp.
55
82
.10.5772/21108
18.
Fu
,
W.-S.
,
Cheng
,
C.-S.
, and
Shieh
,
W.-J.
,
1994
, “
Enhancement of Natural Convection Heat Transfer of an Enclosure by a Rotating Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1885
1897
.10.1016/0017-9310(94)90329-8
19.
Liao
,
C.-C.
, and
Lin
,
C.-A.
,
2014
, “
Mixed Convection of a Heated Rotating Cylinder in a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
9
22
.10.1016/j.ijheatmasstransfer.2013.12.081
20.
Ghaddar
,
N. K.
, and
Thiele
,
F.
,
1994
, “
Natural Convection Over a Rotating Cylindrical Heat Source in a Rectangular Enclosure
,”
Numer. Heat Transfer, Part A: Appl.
,
26
(
6
), pp.
701
717
.10.1080/10407789408956018
21.
Mamun
,
M.
,
Tanim
,
T.
,
Rahman
,
M.
,
Rahman
,
S.
, and
Nagata
,
S.
,
2010
, “
Mixed Convection Analysis inTrapezoidal Cavity With a Moving Lid
,”
Int. J. Mech. Mater. Eng.
,
5
, pp.
18
28
.http://eprints.um.edu.my/id/eprint/6750
22.
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2015
, “
Mixed Convection in Lid-Driven Trapezoidal Cavities With an Aiding or Opposing Side Wall
,”
Numer. Heat Transfer, Part A: Appl.
,
68
(
3
), pp.
312
335
.10.1080/10407782.2014.986001
23.
Tmartnhad
,
I.
,
Alami
,
M. E.
,
Najam
,
M.
, and
Oubarra
,
A.
,
2008
, “
Numerical Investigation on Mixed Convection Flow in a Trapezoidal Cavity Heated From Below
,”
Energy Convers. Manag.
,
49
(
11
), pp.
3205
3210
.10.1016/j.enconman.2008.05.017
24.
Javed
,
T.
,
Mehmood
,
Z.
, and
Pop
,
I.
,
2017
, “
MHD-Mixed Convection Flow in a Lid-Driven Trapezoidal Cavity Under Uniformly/Non-Uniformly Heated Bottom Wall
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
6
), pp.
1231
1248
.10.1108/HFF-01-2016-0029
25.
Kareem
,
A. K.
,
Mohammed
,
H. A.
,
Hussein
,
A. K.
, and
Gao
,
S.
,
2016
, “
Numerical Investigation of Mixed Convection Heat Transfer of Nanofluids in a Lid-Driven Trapezoidal Cavity
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
195
205
.10.1016/j.icheatmasstransfer.2016.08.010
26.
Selimefendigil
,
F.
, and
Chamkha
,
A. J.
,
2016
, “
Magnetohydrodynamics Mixed Convection in a Lid-Driven Cavity Having a Corrugated Bottom Wall and Filled With a Non-Newtonian Power-Law Fluid Under the Influence of an Inclined Magnetic Field
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021023
.10.1115/1.4032760
27.
Kefayati
,
G. H. R.
,
2015
, “
FDLBM Simulation of Magnetic Field Effect on Mixed Convection in a Two Sided Lid-Driven Cavity Filled With Non-Newtonian Nanofluid
,”
Powder Technol.
,
280
, pp.
135
153
.10.1016/j.powtec.2015.04.057
28.
Gangawane
,
K. M.
, and
Oztop
,
H. F.
,
2020
, “
Mixed Convection in the Semi-Circular Lid-Driven Cavity With Heated Curved Wall Subjugated to Constant Heat Flux for Non-Newtonian Power-Law Fluids
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104563
.10.1016/j.icheatmasstransfer.2020.104563
29.
Mamourian
,
M.
,
Milani Shirvan
,
K.
,
Ellahi
,
R.
, and
Rahimi
,
A. B.
,
2016
, “
Optimization of Mixed Convection Heat Transfer With Entropy Generation in a Wavy Surface Square Lid-Driven Cavity by Means of Taguchi Approach
,”
Int. J. Heat Mass Transfer
,
102
, pp.
544
554
.10.1016/j.ijheatmasstransfer.2016.06.056
30.
Chatterjee
,
D.
,
Kumar
,
S.
, and
Mondal
,
B.
,
2014
, “
Mixed Convective Transport in a Lid-Driven Cavity Containing a Nano Fluid and a Rotating Circular Cylinder at the Center
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
71
78
.10.1016/j.icheatmasstransfer.2014.06.002
31.
Khanafer
,
K.
, and
Aithal
,
S. M.
,
2017
, “
Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Rotating Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
131
142
.10.1016/j.icheatmasstransfer.2017.05.025
32.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2015
, “
Mixed Convection of Ferrofluids in a Lid Driven Cavity With Two Rotating Cylinders
,”
Eng. Sci. Technol., Int. J.
,
18
(
3
), pp.
439
451
.10.1016/j.jestch.2015.03.003
33.
Raisi
,
A.
,
2016
, “
Natural Convection of Non-Newtonian Fluids in a Square Cavity With a Localized Heat Source
,”
Strojniški Vestn. - J. Mech. Eng.
,
62
(
10
), pp.
553
564
.10.5545/sv-jme.2015.3218
34.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier
, Oxford, UK.https://www.elsevier.com/books/the-finite-element-method-its-basis-and-fundamentals/zienkiewicz/978-1-85617-633-0
35.
Rahman
,
M. M.
,
Alim
,
M. A.
, and
Mamun
,
M. A. H.
,
2009
, “
Finite Element Analysis of Mixed Convection in a Rectangular Cavity With a Heat-Conducting Horizontal Circular Cylinder
,”
Nonlinear Anal.: Model. Control
,
14
(
2
), pp.
217
247
.10.15388/NA.2009.14.2.14522
36.
Nguyen-Hoang
,
S.
,
Sohn
,
D.
, and
Kim
,
H.-G.
,
2017
, “
A New Polyhedral Element for the Analysis of Hexahedral-Dominant Finite Element Models and Its Application to Non-Linear Solid Mechanics Problems
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
248
277
.10.1016/j.cma.2017.06.014
37.
Redwan
,
D. A.
,
Chowdhury
,
E. H.
,
Rahman
,
M. H.
, and
Prince
,
H. A.
,
2021
, “
Numerical Investigation on the Electronic Components' Cooling for Different Coolants by Finite Element Method
,”
Heat Transfer
, epub. 10.1002/htj.22093
38.
Al-Balushi
,
L. M.
,
Uddin
,
M. J.
, and
Rahman
,
M. M.
,
2019
, “
Natural Convective Heat Transfer in a Square Enclosure Utilizing Magnetic Nanoparticles
,”
Propul. Power Res.
,
8
(
3
), pp.
194
209
.10.1016/j.jppr.2018.07.009
39.
Bayat
,
H. R.
,
Krämer
,
J.
,
Wunderlich
,
L.
,
Wulfinghoff
,
S.
,
Reese
,
S.
,
Wohlmuth
,
B.
, and
Wieners
,
C.
,
2018
, “
Numerical Evaluation of Discontinuous and Nonconforming Finite Element Methods in Non-Linear Solid Mechanics
,”
Comput. Mech.
,
62
(
6
), pp.
1413
1427
.10.1007/s00466-018-1571-z
40.
Rahman
,
M. H.
,
Chowdhury
,
E. H.
,
Redwan
,
D. A.
,
Prince
,
H. A.
, and
Amin
,
M. R.
,
2020
, “
Numerical Investigation of Convective Heat Transfer on a Dynamic Wall Heat Exchanger With Varying Amplitude and Frequency
,”
ASME
Paper No. IMECE2020-23342.10.1115/IMECE2020-23342
You do not currently have access to this content.