Abstract

Predictions of coupled conduction-radiation heat transfer processes in periodic composite materials are important for applications of the materials in high-temperature environments. The homogenization method is widely used for the heat conduction equation, but the coupled radiative transfer equation is seldom studied. In this work, the homogenization method is extended to the coupled conduction-radiation heat transfer in composite materials with periodic microscopic structures, in which both the heat conduction equation and the radiative transfer equation are analyzed. Homogenized equations are obtained for the macroscopic heat transfer. Unit cell problems are also derived, which provide the effective coefficients for the homogenized equations and the local temperature and radiation corrections. A second-order asymptotic expansion of the temperature field and a first-order asymptotic expansion of the radiative intensity field are established. A multiscale numerical algorithm is proposed to simulate the coupled conduction-radiation heat transfer in composite materials. According to the numerical examples in this work, compared with the fully resolved simulations, the relative errors of the multiscale model are less than 13% for the temperature and less than 8% for the radiation. The computational time can be reduced from more than 300 h to less than 30 min. Therefore, the proposed multiscale method maintains the accuracy of the simulation and significantly improves the computational efficiency. It can provide both the average temperature and radiation fields for engineering applications and the local information in microstructures of composite materials.

References

1.
Pichon
,
T.
,
Barreteau
,
R.
,
Soyris
,
P.
,
Foucault
,
A.
,
Parenteau
,
J. M.
,
Prel
,
Y.
, and
Guedron
,
S.
,
2009
, “
CMC Thermal Protection System for Future Reusable Launch Vehicles: Generic Shingle Technological Saturation and Tests
,”
Acta Astronaut.
,
65
(
1–2
), pp.
165
176
.10.1016/j.actaastro.2009.01.035
2.
Tang
,
S.
, and
Hu
,
C.
,
2017
, “
Design, Reparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review
,”
J. Mater. Sci. Technol.
,
33
(
2
), pp.
117
130
.10.1016/j.jmst.2016.08.004
3.
He
,
Y. L.
, and
Xie
,
T.
,
2015
, “
Advances of Thermal Conductivity Models of Nanoscale Silica Aerogel Insulation Material
,”
Appl. Therm. Eng.
,
81
, pp.
28
50
.10.1016/j.applthermaleng.2015.02.013
4.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Coupled Radiation and Low Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
(
9
), pp.
2374
2385
.10.1016/j.solener.2011.06.030
5.
Du
,
S.
,
Tong
,
Z. X.
,
Zhang
,
H. H.
, and
He
,
Y. L.
,
2019
, “
Tomography-Based Determination of Nusselt Number Correlation for the Porous Volumetric Solar Receiver With Different Geometrical Parameters
,”
Renewable Energy
,
135
, pp.
711
718
.10.1016/j.renene.2018.12.001
6.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
7.
Tong
,
Z. X.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2019
, “
A Review of Current Progress in Multiscale Simulations for Fluid Flow and Heat Transfer Problems: The Frameworks, Coupling Techniques and Future Perspectives
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1263
1289
.10.1016/j.ijheatmasstransfer.2019.04.004
8.
He
,
Y. L.
, and
Tao
,
W. Q.
,
2015
, “
Numerical Solutions of Nano/Microphenomena Coupled With Macroscopic Process of Heat Transfer and Fluid Flow: A Brief Review
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
9
), p.
090801
.10.1115/1.4030239
9.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic analysis for periodic structures
,
North-Holland Pub. Co
,
Amsterdam, Netherlands
.
10.
Cioranescu
,
D.
, and
Donato
,
P.
,
1999
,
An Introduction to Homogenization
,
Oxford University Press
,
Oxford, UK
.
11.
Fish
,
J.
,
2014
,
Practical Multiscaling
,
Wiley
,
UK
.
12.
Liu
,
S.
, and
Zhang
,
Y.
,
2006
, “
Multi-Scale Analysis Method for Thermal Conductivity of Porous Material With Radiation
,”
Multidiscip. Model. Mater. Struct.
,
2
(
3
), pp.
327
344
.10.1163/157361106777641332
13.
Allaire
,
G.
, and
El Ganaoui
,
K.
,
2009
, “
Homogenization of a Conductive and Radiative Heat Transfer Problem
,”
Multiscale Model. Simul.
,
7
(
3
), pp.
1148
1170
.10.1137/080714737
14.
Yang
,
Z.
,
Cui
,
J.
,
Nie
,
Y.
, and
Ma
,
Q.
,
2012
, “
The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials With Interior Surface Radiation
,”
CMES – Comput. Model. Eng. Sci.
,
88
(
5
), pp.
419
442
.10.3970/cmes.2012.088.419
15.
Yang
,
Z.
,
Cui
,
J.
,
Sun
,
Y.
, and
Ge
,
J.
,
2015
, “
Multiscale Computation for Transient Heat Conduction Problem With Radiation Boundary Condition in Porous Materials
,”
Finite Elem. Anal. Des.
,
102–103
, pp.
7
18
.10.1016/j.finel.2015.04.005
16.
Yang
,
Z.
,
Sun
,
Y.
,
Cui
,
J.
,
Yang
,
Z.
, and
Guan
,
T.
,
2018
, “
A Three-Scale Homogenization Algorithm for Coupled Conduction-Radiation Problems in Porous Materials With Multiple Configurations
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1196
1211
.10.1016/j.ijheatmasstransfer.2018.05.024
17.
Allaire
,
G.
, and
Habibi
,
Z.
,
2013
, “
Homogenization of a Conductive, Convective, and Radiative Heat Transfer Problem in a Heterogeneous Domain
,”
SIAM J. Math. Anal.
,
45
(
3
), pp.
1136
1178
.10.1137/110849821
18.
Yang
,
Z.
,
Cui
,
J.
, and
Ma
,
Q.
,
2014
, “
The Second-Order Two-Scale Computation for Integrated Heat Transfer Problem With Conduction, Convection and Radiation in Periodic Porous Materials
,”
Discrete Contin. Dyn. Syst.-Ser. B
,
19
(
3
), pp.
827
848
.10.3934/dcdsb.2014.19.827
19.
Yang
,
Z. Q.
,
Cui
,
J. Z.
, and
Li
,
B. W.
,
2014
, “
Second-Order Two-Scale Computations for Conductive—Radiative Heat Transfer Problem in Periodic Porous Materials
,”
Chin. Phys. B
,
23
(
3
), p.
030203
.10.1088/1674-1056/23/3/030203
20.
Haymes
,
R.
, and
Gal
,
E.
,
2018
, “
Iterative Multiscale Approach for Heat Conduction With Radiation Problem in Porous Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
8
), p.
082002
.10.1115/1.4039420
21.
Huang
,
J.
, and
Cao
,
L.
,
2014
, “
Global Regularity and Multiscale Approach for Thermal Radiation Heat Transfer
,”
Multiscale Model. Simul.
,
12
(
2
), pp.
694
724
.10.1137/130919702
22.
Huang
,
J.
,
Cao
,
L.
, and
Yang
,
C.
,
2015
, “
A Multiscale Algorithm for Radiative Heat Transfer Equation With Rapidly Oscillating Coefficients
,”
Appl. Math. Comput.
,
266
, pp.
149
168
.10.1016/j.amc.2015.05.048
23.
Mathiaud
,
J.
, and
Salvarani
,
F.
,
2013
, “
A Numerical Strategy for Radiative Transfer Problems With Higly Oscillating Opacities
,”
Appl. Math. Comput.
,
221
, pp.
249
256
.10.1016/j.amc.2013.06.057
24.
Goudon
,
T.
, and
Mellet
,
A.
,
2003
, “
Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation
,”
ESAIM: Control, Optim. Calculus Variat.
,
9
, pp.
371
398
.10.1051/cocv:2003018
25.
Hutridurga
,
H.
,
Mula
,
O.
, and
Salvarani
,
F.
,
2020
, “
Homogenization in the Energy Variable for a Neutron Transport Model
,”
Asymp. Anal.
,
117
(
1–2
), pp.
1
25
.10.3233/ASY-191544
26.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
27.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
28.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley
,
New York
.
You do not currently have access to this content.