Abstract

The consistent and accurate prediction of fluid flow and heat transfer characteristics in an infrared suppression (IRS) device is challenging due to the complex nature of the flow features. The cool ambient air intake and subsequent mixing of hot exhaust gas from the engine in the cargo/naval ships are done inside the IRS system. The objective is to propose correlations for mass entrainment and outlet temperature for the IRS device with conical funnels. The mass intake rate and funnel exit temperature are determined by a set of relevant operating and geometric parameters, such as Reynolds number, nozzle exhaust temperature, the number of funnels, and funnel overlap. In this study, the funnel walls are conducting with finite wall thickness, and the surface radiation is taken into consideration. Numerical simulations are performed for the real-scale IRS unit by solving the mass, momentum, energy, and radiation equations in the computational domain surrounding the system. Nonlinear regression analysis of the data is carried out using the Levenberg and Marquest (L–M) method to achieve an empirical correlation of mass intake ratio and outlet temperature ratio. The proposed correlation for mass intake ratio is valid within ±6%, and that of outlet temperature is valid within ±5% of the numerical data. The valid ranges for correlations are 6×105 nozzle Reynolds number 3×106; 2  number of funnel  5; −0.325  funnel-overlapping height  0.25; and 1.33  nozzle exit temperature  2.

References

1.
Werle
,
M.
,
Presz
,
W.
,
Jr.
, and
Paterson
,
R.
,
1987
, “
Flow Structure in a Periodic Axial Vortex Array
,”
AIAA
Paper No. 87-0610.10.2514/6.1987-610
2.
Wang
,
S. F.
, and
Li
,
L. G.
,
2006
, “
Investigations of Flows in a New Infrared Suppressor
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
36
45
.10.1016/j.applthermaleng.2005.04.011
3.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infrared Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
4.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infrared Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
5.
Im
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
6.
Shaorong
,
Z.
,
Zhaohui
,
D.
,
Hanping
,
C.
, and
Fangyuan
,
Z.
,
2000
, “
Numerical and Experimental Study on the Suppression for the Infrared Signatures of a Marine Gas Turbine Exhaust System
,”
ASME
Paper No. 2000-GT-0322.10.1115/2000-GT-0322
7.
Sun
,
T.
,
Luan
,
Y.
,
Sun
,
L.
, and
Sun
,
P.
,
2016
, “
Research on Characteristics of a New Marine Gas Turbine Exhaust Ejector Device
,”
ASME
Paper No. GT2016-57214.10.1115/GT2016-57214
8.
Zheng
,
F.
,
Kuznetsov
,
A. V.
,
Roberts
,
W. L.
, and
Paxson
,
D. E.
,
2011
, “
Influence of Geometry on Starting Vortex and Ejector Performance
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051204
.10.1115/1.4004082
9.
Chen
,
Q.
, and
Birk
,
A. M.
,
2005
, “
Experimental Study of an Exhaust Ejector With Entraining Diffuser
,”
ASME
Paper No. GT2005-68654.10.1115/GT2005-68654
10.
Chen
,
Q.
, and
Birk
,
A. M.
,
2007
, “
Experimental and CFD Study of an Exhaust Ejector With Round Entraining Diffuser
,”
ASME
Paper No. GT2007-27643.10.1115/GT2007-27643
11.
Mahulikar
,
S. P.
,
Potnuru
,
S. K.
, and
Arvind Rao
,
G.
,
2009
, “
Study of Sunshine, Skyshine, and Earthshine for Aircraft Infrared Detection
,”
J. Opt. A: Pure Appl. Opt.
,
11
(
4
), pp.
54
63
.10.1088/1464-4258/11/4/045703
12.
Mahulikar
,
S. P.
,
Sane
,
S. K.
,
Gaitonde
,
U. N.
, and
Marathe
,
A. G.
,
2001
, “
Numerical Studies of Infrared Signature Levels of Complete Aircraft
,”
Aeronaut. J.
,
105
(
1046
), pp.
185
192
.10.1017/S0001924000025422
13.
Thompson
,
J.
, and
Vaitekunas
,
D.
,
1998
, “
IR Signature Suppression of Modern Naval Ships
,”
ASNE 21st Century Combatant Technology Symposium
, Biloxi, MS, Jan. 27–30, pp.
1
9
.https://www.davis-eng.com/docs/papers/irss_paper.pdf
14.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Experimental and Numerical Investigation of Air Entrainment Into an Infrared Suppression Device
,”
Appl. Therm. Eng.
,
75
, pp.
33
44
.10.1016/j.applthermaleng.2014.05.042
15.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2014
, “
New Correlation for Prediction of Air Entrainment Into an Infrared Suppression (IRS) Device
,”
Appl. Ocean Res.
,
47
, pp.
303
312
.10.1016/j.apor.2014.06.007
16.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvred Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.10.1016/j.apor.2014.08.009
17.
Barik
,
A. K.
,
Dash
,
S. K.
, and
Guha
,
A.
,
2015
, “
Entrainment of Air Into an Infrared Suppression (IRS) Device Using Circular and Non-Circular Multiple Nozzles
,”
Comput. Fluids
,
114
, pp.
26
38
.10.1016/j.compfluid.2015.02.016
18.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Prediction of Entrance Length and Mass Suction Rate for a Cylindrical Sucking Funnel
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
681
700
.10.1002/fld.2106
19.
Fusegi
,
T.
, and
Farouk
,
B.
,
1990
, “
A Computational and Experimental Study of Natural Convection and Surface/Gas Radiation Interactions in a Square Cavity
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
802
804
.10.1115/1.2910463
20.
Lage
,
J. L.
,
Lim
,
J. S.
, and
Bejan
,
A.
,
1992
, “
Natural Convection With Radiation in a Cavity With Open Top End
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
479
486
.10.1115/1.2911298
21.
Navarro
,
J. M. A.
,
Hinojosa
,
J. F.
,
Piña-Ortiz
,
A.
, and
Xamán
,
J.
,
2021
, “
The Effect of Surface Thermal Radiation on Heat Transfer in a Ventilated Cavity
,”
ASME J. Heat Transfer
,
143
(
1
), p. 012801.10.1115/1.4046530
22.
Sediki
,
E. E.
,
Soufiani
,
A.
, and
Sifaoui
,
M. S.
,
2003
, “
Combined Gas Radiation and Laminar Mixed Convection in Vertical Circular Tubes
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
736
746
.10.1016/S0142-727X(03)00005-5
23.
Yang
,
L.-K.
,
1991
, “
Combined Mixed Convection and Radiation in a Vertical Pipe
,”
Int. Commun. Heat Mass Transfer
,
18
(
4
), pp.
419
430
.10.1016/0735-1933(91)90058-C
24.
Chiu
,
H. C.
,
Jang
,
J. H.
, and
Yan
,
W. M.
,
2007
, “
Mixed Convection Heat Transfer in Horizontal Rectangular Ducts With Radiation Effects
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2874
2882
.10.1016/j.ijheatmasstransfer.2007.01.010
25.
Schuler
,
C.
, and
Campo
,
A.
,
1988
, “
Numerical Prediction of Turbulent Heat Transfer in Gas Pipe Flows Subject to Combined Convection and Radiation
,”
Int. J. Heat Fluid Flow
,
9
(
3
), pp.
308
315
.10.1016/0142-727X(88)90042-2
26.
Kim
,
T. K.
, and
Smith
,
T. F.
,
1985
, “
Radiative and Conductive Transfer for a Real Gas in a Cylindrical Enclosure With Gray Walls
,”
Int. J. Heat Mass Transfer
,
28
(
12
), pp.
2269
2277
.10.1016/0017-9310(85)90045-6
27.
Weng
,
L. C.
, and
Chu
,
H. S.
,
1996
, “
Combined Natural Convection and Radiation in a Vertical Annulus
,”
Heat Mass Transfer
,
31
(
6
), pp.
371
379
.10.1007/BF02172581
28.
Baham
,
G. J.
, and
Mccallum
,
D.
,
1977
, “
Stack Design Technology for Naval and Merchant Ships
,”
SNAME Trans.
,
85
, pp.
324
349
.https://trid.trb.org/view/55919
29.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2012
, “
Maximum Air Suction Into a Louvered Funnel Through Optimum Design
,”
J. Ship Res.
,
56
(1), pp. 1–11.10.5957/jsr.2012.56.1.1
30.
Barik
,
A. K.
,
Mukherjee
,
A.
, and
Patro
,
P.
,
2015
, “
Heat Transfer Enhancement From a Small Rectangular Channel With Different Surface Protrusions by a Turbulent Cross Flow Jet
,”
Int. J. Therm. Sci.
,
98
, pp.
32
41
.10.1016/j.ijthermalsci.2015.07.003
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
32.
Saedodin
,
S.
, and
Motaghedi Barforoush
,
M. S.
,
2015
, “
Experimental and Numerical Investigations on Enclosure Pressure Effects on Radiation and Convection Heat Losses From Two Finite Concentric Cylinders Using Two Radiation Shields
,”
Energy
,
90
(
1
), pp.
652
662
.10.1016/j.energy.2015.07.091
33.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2021
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transfer, Part A: Appl.
,
79
(
6
), pp.
463
487
.10.1080/10407782.2020.1847524
34.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.10.1016/j.compfluid.2010.05.012
35.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2009
, “
Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces
,”
Numer. Heat Transfer, Part B: Fundam.
,
55
(
4
), pp.
273
294
.10.1080/10407790902724602
36.
Mukherjee
,
A.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Flow and Conjugate Heat Transfer With Surface Radiation Characteristics of a Real-Scale Infrared Suppression Device With Conical Funnels
,”
Int. Commun. Heat Mass Transfer
,
123
, pp.
195
208
.10.1016/j.icheatmasstransfer.2021.105208
37.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.10.1016/j.ijthermalsci.2019.03.034
38.
Shen
,
Z. G.
,
Wu
,
S. Y.
,
Xiao
,
L.
,
Li
,
D. L.
, and
Wang
,
K.
,
2015
, “
Experimental and Numerical Investigations of Combined Free Convection and Radiation Heat Transfer in an Upward-Facing Cylindrical Cavity
,”
Int. J. Therm. Sci.
,
89
, pp.
314
326
.10.1016/j.ijthermalsci.2014.11.010
39.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.10.1016/j.ijthermalsci.2020.106355
40.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1995
, “
Combined Conduction, Convection and Radiation in a Slot
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
139
144
.10.1016/0142-727X(94)00014-4
41.
Lakhal
,
W.
,
Trabelsi
,
S.
,
Sediki
,
E.
, and
Moussa
,
M.
,
2009
, “
Combined Thermal Radiation and Mixed Convection in an Inclined Circular Duct
,”
Am. J. Eng. Appl. Sci.
,
2
(
4
), pp.
590
602
.10.3844/ajeassp.2009.590.602
You do not currently have access to this content.